Analysis of Atmospheric Environment Characteristics and Radar Characteristics of Three Short-time Heavy Precipitation Cases under Different Influence Systems in Central Yunnan
Received date: 2023-01-05
Revised date: 2023-05-17
Online published: 2024-01-11
Based on conventional observation data, NCEP 1°×1° reanalysis data, hourly and 5min automatic station precipitation data, and CINRAD/CC Doppler radar data in Kunming, three short-time heavy precipitation cases under different influence systems during the main flood season of 2021 in central Yunnan are studied.The characteristics of precipitation, circulation pattern, atmospheric environment and structure, shape and evolution of radar echoes are compared and analyzed.The results show that the difference of the three short-time heavy precipitation cases is mainly due to the difference weather systems on 500 hPa.There are shear lines at 700 hPa, but the formation seasons are different.There are convergence lines or weak cold fronts on the ground.The environmental conditions of the three cases are consistent with those of other regions of China in terms of unstable stratification, water vapor near the ground and vertical wind shear, however, there are significant differences in the total precipitable water, CAPE, SWEAT index.The shape of convective echo includes dot echo, block echo, strip echo, flocculent echo and so on.Convective storm type can be divided into high-echo-centriod convective storm, low-echo-centriod convective storm and mixed-echo-centriod convective storm.Short-time heavy precipitation has a single stage of some convective storm type, also has several convective storm types appearing at the same time.CAPE and SWEAT index have a certain correlation with convective storm types.Strong echo profile is columnar structure or tower structure.35 dBz strong echo is grounded without overhang characteristics.Short-time heavy precipitation is mostly generated by long- time stagnant or slow-moving convective echo, some short-time heavy precipitation is also generated in the "train effect" of radar echoes.The duration of short-term heavy precipitation formed by monomer with short life cycle is mostly within 1h, but the duration of short-term heavy precipitation formed by monomer combination and repeated generation and extinction or "train effect" is usually 1~3 h.The instantaneous rain intensity produced by high-echo-centriod convective storm can reach more than 10 mm·(5min)-1, while the rainfall intensity produced by low-echo-centriod convective storm and mixed-echo-centriod convective storm can range from 3~10 mm·(5min)-1, and a few can reach more than 10 mm·(5min)-1.
Hong ZHOU , Ying MIN , Yanyan XU , Lijia NA , Hongwei YE . Analysis of Atmospheric Environment Characteristics and Radar Characteristics of Three Short-time Heavy Precipitation Cases under Different Influence Systems in Central Yunnan[J]. Plateau Meteorology, 2024 , 43(1) : 166 -183 . DOI: 10.7522/j.issn.1000-0534.2023.00046
null | |
null | |
null | |
null | |
null | 曹艳察, 郑永光, 盛杰, 等, 2020.2018年7月15 |
null | -17 日北京极端强降水过程三类对流风暴及其强降水特征分析[J].气象, 46(7): 885-897.DOI: 10.7519/j.issn.1000-0526.2020.07.002.Cao Y C , |
null | 常煜, 马素艳, 仲夏, 2018.内蒙古夏季典型短时强降水中尺度特征[J].应用气象学报, 29(2): 232-244.DOI: 10.11898/1001-7313.20180209.Chang Y , |
null | |
null | 陈双, 孙继松, 何立富, 2022.四川盆地不同落区的三次强降水过程多尺度特征分析[J].高原气象, 41(5): 1190-1208.DOI: 10.7522/j.issn.1000-0534.2021.00060.Chen S , |
null | |
null | 陈相甫, 赵宇, 2021.冷涡背景下东北地区短时强降水统计特征[J].高原气象, 40(3): 510-524.DOI: 10.7522/j.issn.1000-0534.2020.00092.Chen X F , |
null | |
null | 陈豫英, 苏洋, 杨银, 等, 2021.贺兰山东麓极端暴雨的中尺度特征[J].高原气象, 40(1): 47-60.DOI: 10.7522/j.issn.1000-0534.2020.00012.Chen Y Y , |
null | |
null | 陈豫英, 苏洋, 张一星, 等, 2022.贺兰山东麓不同量级暴雨过程的环流特征和概念模型[J].高原气象, 41(5): 1161-1174.DOI: 10.7522/j.issn.1000-0534.2022.00068.Chen Y Y , |
null | |
null | 陈元昭, 俞小鼎, 陈训来, 2016.珠江三角洲地区重大短时强降水的基本流型与环境参量特征[J].气象, 42(2): 144-155. |
null | |
null | 仇娟娟, 何立富, 2013.苏沪浙地区短时强降水与冰雹天气分布及物理量特征对比分析[J].气象, 39(5): 577-584.DOI: 10.7519/j.issn.1000-0526.2013.05.005.Qiu J J , |
null | |
null | 丁一汇, 2005.高等天气学[M].北京: 气象出版社, 585. |
null | |
null | 冯晋勤, 汤达章, 营长尧, 2014.福建西部山区短时暴雨雷达回波特征及中小尺度系统分析[J].气象, 40(3): 297-304.DOI: 10.7519/j.issn.1000-0526.2014.03.005.Feng J Q , |
null | |
null | 付超, 谌芸, 单九生, 等, 2021.江西省暖季重大短时强降水敏感性参数分析及概念模型[J].气象科学, 41(1): 39-49.DOI: 10. 12306/2020jms.0016.Fu C , |
null | |
null | 韩宁, 苗春生, 2012.近6年陕甘宁三省5-9 月短时强降水统计特征[J].应用气象学报, 23(6): 691-701.DOI: 10.11898/1001-7313.20120606.Han N , |
null | |
null | 何钰, 陈小华, 李耀孙, 等, 2021.云南省副热带高压外围类短时强降水的雷达回波特征[J].气象, 47(4): 450-462.DOI: 10. 7519/j.issn.1000-0526.2021.04.006.He Y , |
null | |
null | 孔祥伟, 杨建才, 李红, 等, 2021.甘肃河东地区不同环流形势下短时强降水的雷达回波特征分析[J].高原气象, 40(5): 1057-1070.DOI: 10.7522/j.issn.1000-0534.2020.00084.Kong X W , |
null | |
null | 李强, 王秀明, 周国兵, 等, 2020.四川盆地西南低涡暴雨过程的短时强降水时空分布特征研究[J].高原气象, 39(5): 960-972.DOI: 10.7522/j.issn.1000-0534.2019.00096.Li Q , |
null | |
null | 李欣, 张璐, 2020.青岛地区短时强降水雷达回波特征与中小尺度系统分析[J].气象科技, 48(3): 387-395. |
null | |
null | 刘建文, 郭虎, 李耀东, 等, 2005.天气分析预报物理量计算基础[M].北京: 气象出版社, 214-215. |
null | |
null | 罗辉, 肖递祥, 匡秋明, 等, 2020.四川盆地暖区暴雨的雷达回波特 征及分类识别[J].应用气象学报, 31(4): 460-470.DOI: 10.11898/1001-7313.20200408.Luo H , |
null | |
null | 沈澄, 孙燕, 魏晓奕, 等, 2016.基于物理量参数的江苏短时强降水预报模型的研究[J].气象, 42(5): 557-566.DOI: 10.7519/j.issn.1000-0526.2016.05.005.Shen C , |
null | |
null | 盛杰, 张小雯, 孙军, 等, 2012.三种不同天气系统强降水过程中分钟雨量的对比分析[J].气象, 38(10): 1161-1169.DOI: 10. 7519/j.issn.1000-0526.2012.10.001.Sheng J , |
null | |
null | 苏爱芳, 孙景兰, 谷秀杰, 等, 2013.河南省对流性暴雨云系特征与概念模型[J].应用气象学报, 24(2): 219-229.DOI: 10.11898/1001-7313.20130210.Su A F , |
null | |
null | 孙继松, 2017.短时强降水和暴雨的区别与联系[J].暴雨灾害, 36(6): 498-506. |
null | |
null | 孙继松, 雷蕾, 于波, 等, 2015.近 10 年北京地区极端暴雨事件的基本特征[J].气象学报, 73(4): 609-623. |
null | |
null | 田付友, 郑永光, 张涛, 等, 2015.短时强降水诊断物理量敏感性的点对面检验[J].应用气象学报, 26(4): 385-396.DOI: 10. 11898/100-7313.20150401.Tian F Y , |
null | |
null | 田付友, 郑永光, 张涛, 等, 2017.我国中东部不同级别短时强降水天气的环境物理量分布特征[J].暴雨灾害, 36(6): 518-526.DOI: 10.3969/j.issn.1004-9045.2017.06.004.Tian F Y , |
null | |
null | 田付友, 张小玲, 曹艳察, 等, 2022.中国中低海拔地区三类强对流天气环境条件的基本气候特征[J].高原气象, 41(6): 1446-1459.DOI: 10.7522/j.issn.1000-0534.2021.00108.Tian F Y , |
null | |
null | 王宏, 张宇杰, 王秀明, 等, 2021.承德山区夏季短时强降水的时空分布及环境参数特征[J].气象, 47(12): 1469-1483.DOI: 10.7519/j.issn.1000-0526.2021.12.004.Wang H , |
null | |
null | 王孝慈, 李双君, 孟英杰, 2022.武汉地区4次低质心类短时强降水 对流风暴特征分析[J].气象, 48(5): 633-646.DOI: 10.7519/ j.issn.1000-0526.2021.051001.Wang X C , |
null | |
null | 尹丽云, 梅寒, 张腾飞, 等, 2021.云南中部一次出现多个超级单体雹暴的强对流过程环境场和雷达回波特征[J].气象, 47(4): 424-438.DOI: 10.7519/j.issn.1000-0526.2021.04.004.Yin L Y , |
null | |
null | 俞小鼎, 2012.2012 年 7 月 21 日北京特大暴雨成因分析[J].气象, 38(11): 1313-1329.DOI: 10.7519/j.issn.1000-0526. 2012. 11.001.Yu X D , 2012.Investigation of Beijing extreme flooding event on 21 July 2012[J].Meteorological Monthly, 38(11): 1313-1329.DOI: 10.7519/j.issn.1000-0526.2012.11.001 . |
null | 俞小鼎, 2013.短时强降水临近预报的思路与方法[J].暴雨灾害, 32(3): 202-209. |
null | |
null | 张青梅, 李生辰, 苏永玲, 等, 2022.青海高原短时强降水时空分布及天气学概念模型[J].高原气象, 41(2): 515-525.DOI: 10.7522/j.issn.1000-0534.2021.00068.Zhang Q M , |
null | |
null | 张武龙, 康岚, 杨康权, 等, 2021.四川盆地不同强度短时强降水物理量特征对比分析[J].气象, 47(4): 439-449.DOI: 10.7519/ j.issn.1000-0526.2021.04.005.Zhang W L , |
null | |
null | 张一平, 乔春贵, 梁俊平, 2014.淮河上游短时强降水天气学分型与物理诊断量阈值初探[J].暴雨灾害, 33(2): 129-138.DOI: 10.3969/j.issn.1004-9045.2014.02.005.Zhang Y P , |
null | |
null | 赵强, 王楠, 高星星, 等, 2021.西安连续两天短时暴雨的对流条件及触发机制对比分析[J].高原气象, 40(4): 801-814.DOI: 10.7522/j.issn.1000-0534.2020.00053.Zhao Q , |
null | |
null | 郑永光, 陶祖钰, 俞小鼎, 2017.强对流天气预报的一些基本问题[J].气象, 43(6): 641-652. |
null | |
null | 朱平, 肖建设, 2022.青海高原短时强降水天气的葵花-8卫星监测预警特征对比分析[J].高原气象, 41(2): 502-514.DOI: 10.7522/j.issn.1000-0534.2021.00104.Zhu P , |
null | |
null | 庄晓翠, 赵江伟, 李健丽, 等, 2018.新疆阿勒泰地区短时强降水流型及环境参数特征[J].高原气象, 37(3): 675-685.DOI: 10. 7522/j.issn.1000-0534.2017.00061.Zhuang X C , |
null |
/
〈 |
|
〉 |