Turbulent Flux Mass Evaluation and Contribution Region Analysis of the Underlying Surface in Southern Sichuan Forest

  • Demin FAN ,
  • Yu ZHANG ,
  • Youqi SU ,
  • Qian ZHANG
Expand
  • College of Atmospheric Sciences,Chengdu University of Information Technology /Chengdu Plain Urban Meteorology and Environment Sichuan Provincial Field Scientific Observation and Research Station,Chengdu 610225,Sichuan,China

Received date: 2023-01-16

  Revised date: 2023-03-27

  Online published: 2024-01-11

Abstract

As flux observations are susceptible to complex underlying surface and instrument accuracy, rigorous pre-processing and quality control of the raw data is required based on the principles of the Eddy Covariance system observations.In this study, turbulence observations of the eddy-related system from May to December 2021 were selected from the Si'e Mountain Forest in the southern Sichuan region, and the observations were set up at different heights, including within the rough sublayer, at the boundary between the rough sublayer and the normal flux layer, and within the normal flux layer.The variability of the turbulent flux calculations under the two coordinate rotation schemes is quantified by the above observations and the quality of the flux data series is evaluated in conjunction with turbulence stability and development tests.Finally, the range of variability of the flux contribution region represented by the footprint function is analyzed for different atmospheric stability and different observation heights.The results show that the flux data corrected by the double coordinate rotation are larger than those from the plane fit and that the difference in correction between the two is significant with increasing observation height.Regarding flux data quality features, sensible heat flux data quality is better than latent heat flux and CO2 flux, and lower data quality is better than higher data quality.At observation heights of 38 m and 56 m, the dominant wind direction showed opposite day and night variations in northeast-northwest direction, especially from May to September.There is some variation in the range of flux contributions at different levels of atmospheric stability.Under atmospheric stability, 80% of the flux information at 38 m altitude comes from the area 50~1400 m west of the tower; under atmospheric instability, the horizontal range of the source area for flux measurements is between 0 and 500 m.At an observation height of 56 m and under stable atmospheric conditions, the boundary of the source area with 80% flux contribution can be up to 1500 m from the measurement point; under unstable conditions, the source area lies between 0 and 750 m.There is a significant difference in the size of the contribution zone between winter and summer under stable atmospheric conditions, with the maximum turbulent flux information coming from 1320 m and 700 m in summer and winter respectively at an observation height of 38 m.The distribution of the flux contribution zone is influenced by the observation height for the same atmospheric stability, with the flux source zone at 56 m observation height being larger than the flux source zone at 38 m.

Cite this article

Demin FAN , Yu ZHANG , Youqi SU , Qian ZHANG . Turbulent Flux Mass Evaluation and Contribution Region Analysis of the Underlying Surface in Southern Sichuan Forest[J]. Plateau Meteorology, 2024 , 43(1) : 227 -240 . DOI: 10.7522/j.issn.1000-0534.2023.00027

References

null
Baldocchi D Meyers T1998.On using eco-physiological, micrometeorological and biogeochemical theory to evaluate carbon dioxide, water vapor and trace gas fluxes over vegetation: a perspective-ScienceDirect [J].Agricultural and Forest Meteorology90(1/2): 1-25.DOI: 10.1016/S0168-1923(97)00072-5 .
null
Baldocchi D Falge E Gu L, et al, 2001.FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities[J].Bulletin of the American Meteorological Society82(11): 2415-2434.DOI: 10.1175/1520-0477(2001)0822.3 .
null
Chu H Baldocchi D D John R, et al, 2017.Fluxes all of the time? A primer on the temporal representativeness of FLUXNET[J].Journal of Geophysical Research: Biogeosciences, 122: 289-307.DOI: 10.1002/2016JG003576 .
null
Foken T2008.Micrometeorology[M].Springer Berlin, Heidelberg.
null
Foken T Gockede M Mauder M, et al, 2004.Post-field data quality control[M]//Lee X, Massman W, and Law B, eds.Handbook of micrometeorology: a guide for surface flux measurement and analysis.Kluwer Academic Publishers, 2004: 181-208.DOI: 10.1007/1-4020-2265-4_9 .
null
Foken T Wichura B1996.Tools for quality assessment of surface-based flux measurements[J].Agricultural & Forest Meteorology78(1/2): 83-105.DOI: 10.1016/0168-1923(95)02248-1 .
null
Horst T W Weil J C1992.Footprint estimation for scalar flux measurements in the atmospheric surface layer[J].Boundary-Layer Meteorology59(3): 279-296.DOI: 10.1007/BF00119817 .
null
Jiang Y Y Xin J Y Zhao D D, et al, 2020.Analysis of differences between thermodynamic and material boundary layer structure: comparison of detection by ceilometer and microwave radiometer[J].Atmospheric Research, 248: 105179.DOI: 10.1016/j.atmosres.2020.105179 .
null
Kljun N Rotach M W Schmid H P2002.A three-dimensional backward Lagrangian footprint model for a wide range of boundary-layer stratifications[J].Boundary-Layer Meteorology103(2): 205-226.DOI: 10.1023/A: 1014556300021 .
null
Kljun N Calanca P Rotach M W, et al, 2015.A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP)[J].Geoscientific Model Development Discussions8(8): 3695-3713.DOI: 10.5194/gmdd-8-6757-2015 .
null
Kormann R Meixner F X2001.An analytical footprint model for non-neutral stratification[J].Boundary-Layer Meteorology99(2): 207-224.DOI: 10.1023/A: 1018991015119 .
null
Leclerc M Y Foken T2014.Footprints in micrometeorology and ecology[M].Springer Berlin, Heidelberg.
null
Liu S M Xu Z W Wang W Z, et al, 2011.A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem[J].Hydrology and Earth System Sciences15(4): 1291-1306.DOI: 10.5194/hess-15-1291-2011 .
null
Mamkin V Kurbatova J Avilov V, et al, 2016.Changes in net ecosystem exchange of CO2, latent and sensible heat fluxes in a recently clear-cut spruce forest in western Russia: results from an experimental and modeling analysis[J].Environmental Research Letters11(12): 125012.DOI: 10.1088/1748-9326/aa5189 .
null
Mauder M Foken T2015.Documentation and instruction manual of the Eddy-Covariance Software Package TK3[EB/OL].[2023-01-25].Http: //www.bayceer.uni-bayreuth.de/mm/de/software/soft-ware/software_dl.php.
null
Pastorello G Trotta C Canfora E, et al, 2020.The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data[J].Scientific Data7(1): 225.DOI: 10.1038/s41597-020-0534-3 .
null
Schmid H P1997.Experimental design for flux measurements: matching scales of observations and fluxes[J].Agricultural & Forest Meteorology87(2/3): 179-200.DOI: 10.1016/S0168-1923(97)00011-7 .
null
Xu F Wang W Wang J, et al, 2019.Aggregation of area-averaged evapotranspiration over the Ejina Oasis based on a flux matrix and footprint analysis[J].Journal of Hydrology, 557: 17-30.DOI: 10.1016/j.jhydrol.2019.05.011 .
null
常娜, 李茂善, 王灵芝, 等, 2022.峨眉山地区近地层微气象特征研究[J].高原气象41(1): 226-240.DOI: 10.7522/j.issn.1000-0534.2021.00111.Chang N
null
Li M S Wang L Z, et al, 2022.Study on micrometeorological characteristics of near surface layer in Emeishan Area[J].Plateau Meteorology41(1): 226-240.DOI: 10.7522/j.issn.1000-0534.2021.00111 .
null
陈辰, 韦志刚, 董文杰, 等, 2018.珠海凤凰山陆气相互作用观测塔通量数据的质量控制与评价[J].热带气象学报34(4): 561-569.DOI: 10.16032/j.issn.1004-4965.2018.04.014.Chen C
null
Wei Z G Dong W J, et al, 2018.Quality control and evaluation of flux data of observation platform about land-atmosphere interaction in Zhuhai phoenix mountain[J].Journal of Tropical Meteorology34(4): 561-569.DOI: 10.16032/j.issn.1004-4965. 2018.04.014 .
null
陈梓涵, 黄颖, 唐剑武, 等, 2021.长江口九段沙盐沼湿地生态系统通量贡献区分析[J].华东师范大学学报(自然科学版)(2): 42-53.DOI: 10.3969/j.issn.1000-5641.2021.02.005.Chen Z H
null
Haung Y Tang J W, et al, 2021.Flux footprint analysis of a salt marsh ecosystem in the Jiuduansha Shoals of the Changjiang Estuary[J].Journal of East China Normal University (Natural Science)(2): 42-53.DOI: 10.3969/j.issn. 1000-5641.2021. 02.005 .
null
孔令彬, 仝纪龙, 王聚杰, 等, 2014.城市不同下垫面湍流通量的观测和分析[J].兰州大学学报(自然科学版)50(2): 228-232.DOI: 10.3969/j.issn.0455-2059.2014.02.013.Kong L B
null
Tong J L Wang J J, et al, 2014.Observation and analysis of turbulent fluxes between different underlying surfaces in a city[J].Journal of Lanzhou University (Natural Sciences)50(2): 228-232.DOI: 10.3969/j.issn.0455-2059.2014.02.013 .
null
李萍阳, 蒋维楣, 苗世光, 2002.森林及林木湿地上空近地层大气湍流特性的观测分析[J].南京大学学报(自然科学版)38(4): 583-592.
null
Li P Y Jiang W M Miao S G2002.Observational analysis on turbulent characteristics of the atmospheric surface layer above forest and wetland-forest[J].Journal of Nanjing University (Natural Science)38(4): 583-592.
null
李英, 李跃清, 赵兴炳, 2008.青藏高原东部与成都平原大气边界层对比分析Ⅰ——近地层微气象学特征[J].高原山地气象研究28(1): 30-35.
null
Li Y Li Y Q Zhao X B2008.The comparison and analysis of ABL observational data between the east of Tibetan Plateau and Chengdu Plain (Ⅰ)[J].Plateau and Mountain Meteorology Research28(1): 30-35.
null
刘和平, 刘树华, 朱廷曜, 等, 1997.森林冠层湍流结构的特征研究[J].北京大学学报(自然科学版)33(2): 111-118.DOI: 10. 13209/j.0479-8023.1997.035.Liu H P
null
Liu S H Zhu Y Y, et al, 1997.Turbulence structure characteristics within and above Changbai Mountain Forest[J].Acta Scientiarum Naturalium Universitatis Pekinensis33(2): 111-118.DOI: 10.13209/j.0479-8023.1997.035 .
null
刘树华, 胡非, 刘辉志, 等, 2003.森林冠层上湍流尺度、耗散率和湍流结构参数[J].北京大学学报(自然科学版)39(1): 73-82.DOI: 10.3321/j.issn.0479-8023.2003.01.012.Liu S H
null
Hu F Liu H Z, et al, 2003.Turbulence length scales, dissipation rates and structure parameters above the forest canopy[J].Acta Scientiarum Naturalium Universitatis Pekinensis39(1): 73-82.DOI: 10.3321/j.issn.0479-8023.2003.01.012 .
null
刘树华, 茅宇豪, 胡非, 等, 2009.不同下垫面湍流通量计算方法的比较研究[J].地球物理学报52(3): 616-629.
null
Liu S H Mao Y H Hu F, et al, 2009.A comparative study of computing methods of turbulent fluxes on different underling surfaces[J].Chinese Journal of Geophysics52(3): 616-629.
null
马耀明, 马伟强, 胡泽勇, 等, 2002.青藏高原草甸下垫面湍流强度相似性关系分析[J].高原气象21(5): 514-517.
null
Ma Y M Ma W Q Hu Z Y, et al, 2002.Similarity analysis of atmospheric turbulent intensity over grassland surface of Qinghai-Xizang Plateau[J].Plateau Meteorology21(5): 514-517.
null
米娜, 于贵瑞, 温学发, 等, 2006.中国通量观测网络(ChinaFLUX)通量观测空间代表性初步研究[J].中国科学(地球科学)36(): 22-33.
null
Mi N Yu G R Wen X F, et al.A preliminary study on the spatial representation of flux observations in China Flux Observation Network (ChinaFLUX)[J].Science in China (Earth Sciences)36(): 22-33.
null
宫丽娟, 刘绍民, 双喜, 等, 2009.涡动相关仪和大孔径闪烁仪观测通量的空间代表性[J].高原气象28(2): 246-257.
null
Gong L J Liu S M Shuang X, et al, 2009.Investigation of spatial representativeness for surface flux measurements with eddy covariance system and large aperture scintillometer[J].Plateau Meteorology28(2): 246-257.
null
李茂善, 阴蜀城, 刘啸然, 等, 2019.近10 年青藏高原及其周边湍流通量变化的数值模拟[J].高原气象38(6): 1140-1148.DOI: 10.7522/j.issn.1000-0534.2018.00145.Li M S
null
Yin S C Liu X R, et al, 2019.Numerical simulation of the variation of the turbulent fluxes on the Qinghai-Tibetan Plateau and its surrounding area from 2004 to 2013[J].Plateau Meteorology38(6): 1140-1148.DOI: 10.7522/j.issn.1000-0534.2018.00145.
null
李跃清, 2021.西南涡涡源研究的有关新进展[J].高原气象40(6): 1394-1406.DOI: 10.7522/j.issn.1000-0534.2021.zk005. LI Y Q , 2021.New related progress on researches of the vortex source of Southwest China Vortex[J].Plateau Meteorology, 40(6): 1394-1406.DOI: 10.7522/j.issn.1000-0534.2021.zk005 .
null
梁捷宁, 张镭, 鲍婧, 等, 2013.黄土高原复杂地形受中尺度运动影响的稳定边界层湍流特征[J].大气科学37(1): 113-123.DOI: 10.3878/j.issn.1006-9895.2012.12004.Liang J N
null
Zhang L Bao J, et al, 2013.Turbulence influenced by mesoscale motions in the stable boundary layer over complex terrain of the Loess Plateau[J].Chinese Journal of Atmospheric Sciences37(1): 113-123.DOI: 10.3878/j.issn.1006-9895.2012.12004 .
null
孙鹏飞, 范广洲, 王寅钧, 等, 2022.小兴安岭森林下垫面湍流特征研究[J].气象48(8): 1020-1031.DOI: 10.7519/j.issn.1000-0526.2022.032102.Sun P F
null
Fan H Z Wang Y J, et al, 2022.Research on turbulence characteristics of forest underlying surface in Xiaoxing'an Mountains[J].Meteorological Monthly48(8): 1020-1031.DOI: 10.7519/j.issn.1000-0526.2022.032102 .
null
孙赛钰, 王维真, 徐菲楠, 2021.黑河流域中上游水热通量足迹模型的对比分析[J].遥感技术与应用36(4): 887-897.DOI: 10.11873/j.issn.1004-0323.2021.4.0887.Sun S Y
null
Wang W Z Xu F N2021.Comparison of footprint models of surface heat and water vapor fluxes in the middle and upper reaches of Heihe River Basin[J].Remote Sensing Technology and Application36(4): 887-897.DOI: 10.11873/j.issn.1004-0323.2021. 4.0887 .
null
王介民, 王维真, 奥银焕, 等, 2007.复杂条件下湍流通量的观测与分析[J].地球科学进展22(8): 791-797.DOI: 10.3321/j.issn.1001-8166.2007.08.004.Wang J M
null
Wang W Z Ao Y H, et al, 2007.Turbulence flux measurements under complicated conditions[J].Advances in Earth Science22(8): 791-797.DOI: 10.3321/j.issn.1001-8166.2007.08.004 .
null
王蓉, 张强, 岳平, 等, 2020.大气边界层数值模拟研究与未来展望[J].地球科学进展35(4): 331-349.DOI: 10.11867/j.issn. 1001-8166.2020.036.Wang R
null
Zhang Q Yue P, et al, 2020.Summary and prospects of numerical simulation research of the atmospheric boundary layer[J].Advances in Earth Science35(4): 331-349.DOI: 10.11867/j.issn.1001-8166.2020.036 .
null
王少影, 张宇, 吕世华, 等, 2009.金塔绿洲湍流资料的质量控制研究[J].高原气象28(6): 1260-1273.
null
Wang S Y Zhang Y S H, et al, 2009.The preliminary study on turbulence data quality control of Jinta Oasis[J].Plateau Meteorology28(6): 1260-1273.
null
王维真, 徐自为, 刘绍民, 等, 2009.黑河流域不同下垫面水热通量特征分析[J].地球科学进展24(7): 714-723.
null
Wang W Z Xu Z W Liu S M, et al, 2009.The characteristics of heat and water vapor fluxes over different surfaces in the Heihe River Basin[J].Advances in Earth Science24(7): 714-723.
null
吴笛, 胡泽勇, 付春伟, 等, 2022.基于CLM4.5的高寒草地辐射收支和水热交换的数值模拟研究[J].高原气象41(1): 107-121.DOI: 10.7522/j.issn.1000-0534.2021.00045.Wu D
null
Hu Z Y Fu C W, et al, 2022.A simulation study on radiation budget and water-heat ex-change over alpine grassland based on CLM4.5[J].Plateau Meteorology41(1): 107-121.DOI: 10. 7522/j.issn.1000- 0534.2021.00045 .
null
徐自为, 刘绍民, 宫丽娟, 等, 2008.涡动相关仪观测数据的处理与质量评价研究[J].地球科学进展23(4): 357-370.DOI: 10.11867/j.issn.1001-8166.2008.04.0357.Xu Z W
null
Liu S M Gong L J, et al, 2008.A study on the data processing and quality assessment of the eddy covariance system[J].Advances in Earth Science23(4): 357-370.DOI: 10.11867/j.issn.1001-8166. 2008.04.0357 .
null
杨斌, 袁祺, 谭昌海, 等, 2022.青藏高原东部拉萨河下游地区大气湍流交换特征研究[J].高原气象41(1): 204-215.DOI: 10.7522/j.issn.1000-0534.2021.00086.Yang B
null
Yuan Q Tan C H, et al, 2022.Study on the characteristics of atmospheric turbulence exchange in the low‐er reaches of the Lhasa River in the eastern Qinghai-Xizang Plateau[J].Plateau Meteorology41(1): 204-215.DOI: 10.7522/j.issn.1000-0534.2021.00086 .
null
张艳武, 黄静, 吴统文, 2009.黑河下游额济纳绿洲近地层湍流输送特征研究[J].气象学报67(3): 433-441.DOI: 10.11676/qxxb2009.043.Zhang Y W
null
Huang J Wu T W2009.A study on the boundary layer turbulence transfer over the Ejina oasis in the lower reach of the Heihe River[J].Acta Meteorologica Sinica67(3): 433-441.DOI: 10.11676/qxxb2009.043 .
null
赵佳玉, 肖薇, 张弥, 等, 2020.通量梯度法在温室气体及同位素通量观测研究中的应用与展望[J].植物生态学报44(4): 305-317.DOI: 10.17521/cjpe.2019.0227.Zhao J Y
null
Xiao W Zhang M, et al, 2020.Applications and prospect of the flux-gradient method in measuring the greenhouse gases and isotope fluxes[J].Chinese Journal of Plant Ecology44(4): 305-317.DOI: 10.17521/cjpe.2019.0227 .
null
赵兴炳, 刘长炜, 童兵, 等, 2021.青藏高原西部狮泉河陆面过程参数和土壤热属性参数研究[J].高原气象40(4): 711-723.DOI: 10.7522/j.issn.1000-0534.2021.00017.Zhao X B
null
Liu C W Tong B, et al, 2021.Study on surface process parameters and soil thermal parameters at Shiquanhe in the western Qinghai-Xizang Plateau[J].Plateau Meteorology40(4): 711-723.DOI: 10.7522/j.issn.1000- 0534.2021.00017 .
null
周德刚, 黄荣辉, 2010.在观测质量控制下戈壁下垫面的湍流输送特征[J].中国科学(地球科学)40(8): 1068-1078.
null
Zhou D G Huang R H2010.Characterization of turbulent flux transfer over a Gobi surface with quality-controlled observations[J].Science in China (Earth Sciences)40(8): 1068-1078.
Outlines

/