Optical Characterization of Aerosols in Gansu Province Based on CE-318 Observations
Received date: 2022-07-19
Revised date: 2023-03-28
Online published: 2024-01-11
The quantitative analysis of ground-based observations of atmospheric aerosols is a basic way to understand the optical properties of aerosols and the characteristics of atmospheric pollution, which can provide a certain basis for exploring the direction of pollution control.In recent years, there are few studies on the analysis of aerosol optical properties in different regions of Gansu Province using ground-based observations.In order to understand the atmospheric aerosol optical characteristics of different land surfaces in Gansu Province, we obtained the aerosol optical depth (AOD) of four stations in Gansu Province through ASTPwin software based on CE-318 solar photometer observations from April 2018 to September 2020 and calculated the Angstrom wavelength index α.The distribution and variation characteristics of AOD and α in different regions of Gansu Province in different seasons and the relationship between aerosol optical depth and wavelength index were analyzed.The results show that: (1) the changes of AOD in each wavelength band tend to be consistent in all stations during the observation period, and the AOD value decreases with increasing wavelength.The AOD values of Lanzhou and Gaolan Mountain were the highest in winter, followed by spring and autumn, and the lowest in summer.The winter and spring AOD values of Lanzhou exceeded the annual average by 14.98% and 4.68%, respectively, and the winter AOD value of Gaolan Mountain exceeded the annual average by 3.88%.Dunhuang and Minqin both had the highest AOD values in spring, which were 24.49% and 26.30% higher than their respective annual averages.The seasonal distribution of AOD in Dunhuang was: spring > summer > winter > autumn, while Minqin showed a trend of gradually smaller values from spring to winter.(2) The dominant particles in Lanzhou and Gaolan Mountain are coarse modal in spring and summer, while fine particles dominate in autumn and winter.Dunhuang and Minqin atmospheric aerosols are dominated by coarse modal particles all year round.In the winter of 2019, the AOD value of Lanzhou was 68.0% higher than that of Gaolan Mountain; Dunhuang and Minqin had more serious sand and dust aerosol pollution in spring 2019, and the AOD value of Dunhuang exceeded that of Minqin by 42.42%.(3) The frequency distribution of AOD and α at all sites showed a single-peaked curve, with variability in the range of high-frequency distribution of AOD in different seasons, but they were all below 1.0.The distribution of high-frequency range of α was more complex, with the range of α distribution less than 1.0 in spring in Lanzhou, spring and summer in Gaolan Mountain, four seasons in Dunhuang, and spring, summer and autumn in Minqin, while α in summer, autumn and winter in Lanzhou, autumn and winter in Gaolan Mountain, and winter in Minqin was mainly distributed at 1.1 or above.(4) The relationship between AOD and α differs in different seasons, which shows that the size of the dominant particles of aerosol differs in different seasons when the atmosphere is seriously or locally polluted.In spring when the atmosphere is in local or serious pollution and in summer when the atmosphere is in local pollution, the aerosols at the four stations are mainly large particle size, with the contribution of sand and dust aerosols being larger.In summer when the atmosphere is in serious pollution, Gaolan Mountain aerosol is mainly fine mode particles, Lanzhou, Dunhuang and Minqin aerosol is still controlled by coarse mode, but the proportion of pollution caused by small particle size in Lanzhou is higher than the remaining two stations, of which more than 85% belongs to urban industrial - aerosol pollution.In autumn, when the atmosphere is in serious pollution, Lanzhou and Gaolan Mountain are both dominated by fine modal particles, of which urban industrial-aerosols account for a significant increase, while Dunhuang and Minqin are still dominated by coarse modal particles, of which dust aerosols account for a large proportion.In winter, Lanzhou is still dominated by fine modal particles, while the other three stations are dominated by coarse modal particles.In winter, Dunhuang and Minqin are dominated by coarse and fine modal particles, while Gaolan Mountain is dominated by fine modal particles when the atmosphere is locally polluted.The analysis shows that, in general, aerosol pollution in the northern part of Gansu is dominated by sand and dust aerosols, while aerosol pollution in the southern part of Gansu shows alternating coarse-mode and fine-mode particles, which provides some references for the next study of aerosol properties and atmospheric pollution characteristics in different regions of Gansu by combining satellite remote sensing data.
Fangfang HUANG , Weiqiang MA , Suichan WANG , Hong ZHANG , Xiaoyi KONG , Pinrui LU , Xudong WANG , Hao LIU , Yidan YAN . Optical Characterization of Aerosols in Gansu Province Based on CE-318 Observations[J]. Plateau Meteorology, 2024 , 43(1) : 241 -253 . DOI: 10.7522/j.issn.1000-0534.2023.00030
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 陈雪, 2021.2013—2019年兰州市城市环境空气质量变化趋势研究[D].兰州: 兰州大学.DOI: 10.27204/d.cnki.glzhu.2021. 002555.Chen X, 2021.Study on the variation trend of ambient air quality in Lanzhou from 2013 to 2019[D].Lanzhou: Lanzhou University.DOI: 10.27204/d.cnki.glzhu.2021.002555 . |
null | 杜韬, 2022.兰州大气细颗粒物和臭氧的污染特征、形成机制及相互作用[D].兰州: 兰州大学.DOI: 10.27204/d.cnki.glzhu.2022.000155.Du T, 2022.Pollution characteristics, formation mechanism and interaction of atmospheric fine particulate matter and ozone in Lanzhou[D].Lanzhou: Lanzhou university.DOI: 10.27204/d.cnki.glzhu.2022.000155 . |
null | 关勖, 2022.西北半干旱区典型城市吸收性气溶胶的垂直分布和辐射效应[D].兰州: 兰州大学.DOI: 10.27204/d.cnki.glzhu.2022.000152.Guan X, 2022.Guan vertical distribution and radiative effects of absorbing aerosols in a typical city in the semi-arid region of northwest China[D].Lanzhou: Lanzhou university.DOI: 10.27204/d.cnki.glzhu.2022.000152 . |
null | 黄悦, 陈斌, 董莉, 等, 2021.利用星载和地基激光雷达分析2019年5月东亚沙尘天气过程[J].大气科学, 45(3): 524-538.DOI: 10.3878/j.issn.1006-9895.2008.19249.Huang Y , |
null | |
null | 菅煜婷, 张勃, 黄浩, 2022. 近 58年甘肃气候变化区域差异分析及环流影响[J].高原气象, 41(5): 1291-1301.DOI: 10.7522/j.issn.1000-0534.2021.00066.Jian Y T , |
null | |
null | 李海龙, 张自力, 李正泉, 等, 2018.基于CE318数据的杭州市气溶胶光学特征研究[J].科技通报, 34(6): 46-53.DOI: 10. 13774/j.cnki.kjtb.2018.06.010.Li H L , |
null | |
null | 李梦倩, 2021.兰州市二次有机气溶胶生成潜势及污染特征研究[D].兰州: 兰州大学.DOI: 10.27204/d.cnki.glzhu. 2021. 002397.Li M Q, 2021.Formation potential and pollution characteristics of secondary organic aerosol in Lanzhou, China[D].Lanzhou: Lanzhou University.DOI: 10.27204/d.cnki.glzhu.2021.002397 . |
null | 李明明, 王雁, 闫世明, 等, 2018.基于太阳光度计大气气溶胶光学厚度变化特征研究[C].北京: 第 35 届中国气象学会年会 S12大气成分与天气、气候变化与环境影响暨环境气象预报及影响评估, 280-286.Li M M, Wang Y, Yan S M, et al, 2018.Variation Characteristics of Atmospheric Aerosol Optical Depth in Taiyuan[C].Beijing: 35th Annual Meeting of the Chinese Meteorological Society S12 Atmospheric Composition and Weather, Climate Change and Environmental Impacts and Environmental Meteorological Forecasting and Impact Assessment, 280-286. |
null | 李霞, 陈勇航, 胡秀清, 等, 2005.乌鲁木齐大气气溶胶的光学特性分析[J].中国环境科学(S1): 22-25.Li X, Chen Y H, Hu X Q, et al, 2005, Analysis of atmospheric aerosol optical properties over Urumqi[J].China Environmental Science(S1): 22-25. |
null | 李岩瑛, 张春燕, 张爱萍, 等, 2022.河西走廊春季沙尘暴大气边界层垂直结构特征[J].气象, 48(9): 1171-1185. |
null | |
null | 刘浩, 高小明, 谢志英, 等, 2015.京津冀晋鲁区域气溶胶光学厚度的时空特征[J].环境科学学报, 35(5): 1506-1511. |
null | |
null | 刘慧, 余晔, 夏敦胜, 等, 2020.基于太阳光度计的兰州市秋季气溶胶光学特性[J].高原气象, 39(1): 204-212.DOI: 10.7522/j.issn.1000-0534.2019.00057.Liu H , |
null | |
null | 刘莹, 林爱文, 覃文敏, 等, 2019.1990~2017 年中国地区气溶胶光学厚度的时空分布及其主要影响类型[J].环境科学, 40(6): 2572-2581.DOI: 10.13227/j.hjkx.201809220.Liu Y , |
null | |
null | 刘玉杰, 牛生杰, 郑有飞, 2004.用CE-318太阳光度计资料研究银川地区气溶胶光学厚度特性[J].南京气象学院学报(5): 615-622.DOI: 10.13878/j.cnki.dqkxxb.2004.05.005.Liu Y J , |
null | |
null | 卢永正, 2000.气溶胶科学引论[M].北京: 原子能出版社.Lu Y Z, 2000.Introduction to aerosol science[M].Beijing: Atomic Energy Press. |
null | 罗宇翔, 陈娟, 郑小波, 等, 2012.近10 年中国大陆 MODIS遥感气溶胶光学厚度特征[J].生态环境学报, 21(5): 876-883.DOI: 10.16258/j.cnki.1674-5906.2012.05.026.Luo Y X , |
null | |
null | 麻金继, 杨世植, 张玉平, 2005.厦门海域气溶胶光学特性的观测研究[J].量子电子学报, 2005(3): 473-476. |
null | |
null | 马玉娟, 陈艳拢, 赵建华, 等, 2020.北黄海圆岛海域MODIS气溶胶光学厚度产品有效性验证[J].海洋环境科学, 39(1): 99-105.DOI: 10.13634/j.cnki.mes.2020.01.014.Ma Y J , |
null | |
null | 毛节泰, 张军华, 王美华, 2002.中国大气气溶胶研究综述[J].气象学报, 60(5): 625-634. |
null | |
null | 牟福生, 李素文, 李昂, 等, 2018.利用太阳光度计进行北京地区气溶胶光学性质研究[J].大气与环境光学学报, 13(2): 88-96. |
null | |
null | 任宜勇, 李霞, 吕鸣, 等, 2006.CE318太阳光度计观测资料应用前景及其解读[J].气象科技, 2006(3): 349-352.DOI: 10.19517/j.1671-6345.2006.03.029.Ren Y Y , |
null | |
null | 盛丹睿, 温小虎, 冯起, 等, 2021.2018年春季西北五省省会城市大气质量与健康风险评价[J].高原气象, 40(1): 200-208.DOI: 10.7522/j.issn.1000-0534.2019.00113.Sheng D R , |
null | |
null | 宋广宁, 杨小银, 付培健, 2013.兰州市大气气溶胶的太阳光度计观测分析[J].兰州大学学报(自然科学版), 49(4): 470-473+482. |
null | |
null | 王贺, 曹念文, 王鹏, 等, 2017.南京地区大气气溶胶综合观测与对比分析[J].遥感学报, 21(1): 125-135. |
null | |
null | 王智敏, 热苏力·阿不拉, 冯婉悦, 等, 2019.新疆地区不同下垫面气溶胶光学特性的分析[J].冰川冻土, 41(6): 1367-1376.DOI: 10.7522/j.issn.1000-0240.2019.0087.Wang Z M , |
null | |
null | 吴立新, 吕鑫, 秦凯, 等, 2016.基于太阳光度计地基观测的徐州气溶胶光学特性变化分析[J].科学通报, 61(20): 2287-2298. |
null | |
null | 徐丹, 邓孺孺, 陈启东, 等, 2015.基于CE318观测的广州市气溶胶光学特性[J].热带地理, 35(1): 21-28.DOI: 10.13284/j.cnki.rddl.002660.Xu D , |
null | |
null | 徐小红, 余兴, 朱延年, 等, 2021.气溶胶对中国中纬度夏季低层风速的影响[J].高原气象, 40(2): 367-373.DOI: 10.7522/j.issn.1000-0534.2020.00037.Xu X H , |
null | |
null | 杨志峰, 张小曳, 车慧正, 等, 2008.CE318型太阳光度计标定方法初探[J].应用气象学报, 19(3): 297-305. |
null | |
null | 于杰, 车慧正, 陈权亮, 等, 2016.2010-2012年我国西北地区沙尘个例气溶胶特征分析[J].气象与环境科学, 39(2): 33-40.DOI: 10.16765/j.cnki.1673-7148.2016.02.005.Yu J , |
null | |
null | 于志翔, 李霞, 于晓晶, 等, 2022.2003-2019年新疆气溶胶光学厚度时空变化特征[J].干旱区地理, 45(2): 346-358. |
null | |
null | 曾唯, 郝庆菊, 赵仲婧, 等, 2020.北碚区气溶胶光学厚度特征及其与颗粒物浓度的相关性[J].环境科学, 41(3): 57-67.DOI: 10.13227/j.hjkx.201907068.Zeng W , |
null | |
null | 张小曳, 2014.中国不同区域大气气溶胶化学成分浓度、组成与来源特征[J].气象学报, 72(6): 1108-1117. |
null | |
null | 赵秀娟, 陈长和, 袁铁, 等, 2005.兰州冬季大气气溶胶光学厚度及其与能见度的关系[J].高原气象, 24(4): 617-622. |
null | |
null | 郑玉蓉, 王旭红, 崔思颖, 等, 2022.基于地基太阳光度计观测的长安区气溶胶光学特性变化及其与颗粒物浓度的关系[J].环境科学, 43(7): 3494-3507.DOI: 10.13227/j.hjkx.202109055.Zheng Y H , |
null |
/
〈 |
|
〉 |