Simulation Study of Typical Flash Floods based on Radar-Estimated Rainfall and WRF-Hydro Model

  • Yingchun HU ,
  • Yaodeng CHEN ,
  • Yufang GAO ,
  • Tao PENG
Expand
  • 1. Key Laboratory of Meteorological Disaster of Ministry of Education /Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/School of Applied Meteorology,Nanjing University of Information Science & Technology,Nanjing 210044,Jiangsu,China
    2. China Meteorological Administration Basin Heavy Rainfall Key Laboratory/Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research,Institute of Heavy Rain,China Meteorological Administration,Wuhan 430205,Hubei,China
    3. Three Gorges National Climatological Observatory,Yichang 443099,Hubei,China

Received date: 2022-09-20

  Revised date: 2023-05-15

  Online published: 2024-01-11

Abstract

Limitations of complex topography and lack of basic meteorological and hydrological information make the hydrological early warning and forecasting technology in small-scale mountainous watersheds weak.Using high-resolution radar observations to drive distributed hydrological models is one of the effective ways to improve the flood forecasting capabilities in small mountainous watersheds.Focusing on the Erhe river basin located in central Chongqing as the study area, a study of WRF-Hydro model flash flood simulation based on radar-estimated rainfall data is carried out to evaluate the hydrological application effect of radar-estimated rainfall and the applicability of WRF-Hydro model in small mountainous watersheds.The typical storm flood process in the watershed was selected, and the WRF-Hydro model was driven by the estimated rainfall data from S-band Doppler weather radar, and further compared with the XAJ model to analyze the simulation effects.The results show that: (1) the WRF-Hydro model driven by radar-estimated rainfall data provides a better simulation of the flood process, flood flow and peak-to-peak time in the Second River Basin, with the Nash efficiency coefficient above 0.65, the Kling-Gupta efficiency coefficient above 0.50 and the correlation coefficient above 0.85.(2) Comparing the WRF-Hydro model with the XAJ model, the simulation effectiveness of the WRF-Hydro model is superior to that of the XAJ model in the Erhe River basin, with a difference of 0.03 in the Nash coefficient and 0.04 in the correlation coefficient, further indicating the superior flood simulation performance of the WRF-Hydro model in small mountainous basins.Overall, the WRF-Hydro model based on radar-estimated rainfall data exhibited satisfactory flood simulation performance in the Erhe basin, and can be further applied in similar small-scale mountainous basins.

Cite this article

Yingchun HU , Yaodeng CHEN , Yufang GAO , Tao PENG . Simulation Study of Typical Flash Floods based on Radar-Estimated Rainfall and WRF-Hydro Model[J]. Plateau Meteorology, 2024 , 43(1) : 254 -263 . DOI: 10.7522/j.issn.1000-0534.2023.00044

References

null
Arnault J Wagner S Rummler T, et al, 2016.Role of runoff-infiltration partitioning and resolved overland flow on land-atmosphere feedbacks: a case study with the WRF-Hydro coupled modeling system for West Africa[J].Journal of Hydrometeorology17(5): 1489-1516.DOI: 10.1175/JHM-D-15-0089.1 .
null
Avolio E Cavalcanti O Furnari L, et al, 2019.Brief communication: Preliminary hydro-meteorological analysis of the flash flood of 20 August 2018 in Raganello Gorge, southern Italy[J].Natural Hazards and Earth System Sciences19(8): 1619-1627.DOI: 10.5194/nhess-19-1619-2019 .
null
Ekmekcio? lu ? Demirel M C Booij M J2022.Effect of data length, spin-up period and spatial model resolution on fully distributed hydrological model calibration in the Moselle basin[J].Hydrological Sciences Journal67(5): 759-772.DOI: 10.1080/02626667.2022.2046754 .
null
Gochis D J Barlage M Cabell R, et al, 2020.The WRF-Hydro modeling system technical description, (Version 5.1.1)[M].NCAR Technical Note, 107.
null
Gu T W Chen Y D Gao Y F, et al, 2021.Improved streamflow forecast in a small-medium sized river basin with coupled WRF and WRF-Hydro: effects of radar data assimilation[J].Remote Sensing13(16): 3251.DOI: 10.3390/RS13163251 .
null
Gupta H V Kling H Yilmaz K K, et al, 2009.Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling[J].Journal of hydrology377(1-2): 80-91.DOI: 10.1016/j.jhydrol.2009.08.003 .
null
Liu D2020.A rational performance criterion for hydrological model[J].Journal of Hydrology, 590: 125488.DOI: 10.1016/j.jhydrol.2020.125488 .
null
Lu L Gochis D J Sobolowski S, et al, 2017.Evaluating the present annual water budget of a Himalayan headwater river basin using a high-resolution atmosphere-hydrology model[J].Journal of Geophysical Research: Atmospheres122(9): 4786-4807.DOI: 10.1002/2016JD026279 .
null
Ma Y Z Changrasekar V Chen H N, et al, 2021.Quantifying the potential of AQPI gap-filling radar network for streamflow simulation through a WRF-hydro experiment[J].Journal of Hydrometeorology22(7): 1869-1882.DOI: 10.1175/JHM-D-20-0122.1 .
null
Moriasi D N Arnold J G Vanliew M W, et al, 2007.Model evaluation guidelines for systematic quantification of accuracy in watershed simulations[J].Transactions of the ASABE50(3): 885-900.DOI: 10.13031/2013.23153 .
null
Soms V M Palmer R2018.Use of WRF-hydro over the Northeast of the US to estimate water budget tendencies in small watersheds[J].Water10(12): 1709.DOI: 10.3390/w10121709 .
null
Varlas G Anagnostou M N Spyrou C, et al, 2018.A multi-platform hydrometeorological analysis of the flash flood event of 15 November 2017 in Attica, Greece[J].Remote Sensing11(1): 45.DOI: 10.3390/rs11010045 .
null
Wijayarathne D Coulibaly P Boodoo S, et al, 2021.Use of radar quantitative precipitation estimates (QPEs) for improved hydrological model calibration and flood forecasting[J].Journal of Hydrometeorology22(8): 2033-2053.DOI: 10.1175/JHM-D-20-0267.1 .
null
Yuan F Zhang L M Win K W W, et al, 2017.Assessment of GPM and TRMM multi-satellite precipitation products in streamflow simulations in a data-sparse mountainous watershed in Myanmar[J].Remote Sensing9(3): 302.DOI: 10.3390/rs9030302 .
null
Zhang J Q Lin P R Gao S, et al, 2020.Understanding the re-infiltration process to simulating streamflow in North Central Texas using the WRF-Hydro modeling system[J].Journal of Hydrology, 587: 124902.DOI: 10.1016/j.jhydrol.2020.124902 .
null
包红军, 王莉莉, 沈学顺, 等, 2016.气象水文耦合的洪水预报研究进展[J].气象42(9): 1045-1057.DOI: 10.7519/j.issn.1000-0526.2016.09.002.Bao H J
null
Wang L L Shen X S, et al, 2016.A review: advances of flood forecasting of hydro-meteorological forecast technology[J].Meteorological Monthly42(9): 1045-1057.DOI: 10.7519/j.issn.1000-0526.2016.09.002 .
null
包红军, 张恒德, 许凤雯, 等, 2021.国家级水文气象预报业务技术进展与挑战[J].气象47(6): 671-684.DOI: 10.7519/j.issn. 1000-0526.2021.06.003.Bao H J
null
Zhang H D Xu F W, et al, 2021.Progress and challenge of national level operational technology for hydrometeorological forecasting [J].Meteorological Monthly47(6): 671-684.DOI: 10.7519/j.issn.1000-0526. 2021.06.003 .
null
晁丽君, 张珂, 陈新宇, 等, 2022.基于多源降水融合驱动的WRF -Hydro模型在中小河流洪水预报中的适用性[J].河海大学学报 (自然科学版)50(3): 55-64.DOI: 10.3876/j.issn.1000-1980.2022.03.008.Chao L J
null
Zhang K Chen X Y, et al, 2022.Applicability of WRF-Hydro model based by multi-source precipitation merging in flood forecasting for small and medium-sized watersheds[J].Journal of Hohai University(Natural Sciences)50(3): 55-64.DOI: 10.3876/j.issn.1000-1980.2022. 03.008 .
null
冯克鹏, 洪阳, 田军仓, 等, 2020.多源降水数据的小流域水文模拟效用评估[J].干旱区地理43(5): 1179-1191.DOI: 10.12118/ j.issn.1000-6060.2020.05.03.Feng K P
null
Hong Y Tian J C, et al, 2022.Evaluating runoff simulation of multi-source precipitation data in small watersheds[J].Arid Land Geography43(5): 1179-1191.DOI: 10.12118/ j.issn.1000-6060.2020.05.03 .
null
高玉芳, 吴雨晴, 彭涛, 等, 2020.基于不同降水产品的WRF-Hydro模式径流模拟——以漳河流域为例[J].热带气象学报36 (3): 299-306.DOI: 10.16032/j.issn.1004-4965.2020.028.Gao Y F
null
Wu Y Q Peng T, et al, 2020.Application of WRF-Hydro for runoff simulation based on different rainfall products: taking Zhanghe River Basin as an example[J].Journal of Tropical Meteorology36 (3): 299-306.DOI: 10.16032/j.issn. 1004-4965.2020.028 .
null
龚珺夫, 陈红兵, 朱芳, 等, 2021.新安江模型在资料匮乏的长江中下游山区中小流域洪水预报应用[J].湖泊科学33(2): 581-594+650.DOI: 10.18307/2021.0223.Gong J F
null
Chen H B Zhu F, et al, 2021.Application of Xin'anjiang Model in the flow prediction of ungauged small-and medium-sized catchments in the middle and lower reaches of the Yangtze River Basin[J].Journal of Lake Sciences33(2): 581-594+650.DOI: 10.18307/2021.0223 .
null
顾天威, 陈耀登, 高玉芳, 等, 2021.基于 WRF-Hydro模式的清江流域洪水模拟研究[J].水文41(3): 63-68+18.DOI: 10. 19797/j.cnki.1000-0852.20190429.Gu T W
null
Chen Y D Gao Y F, et al, 2021.Study of Flood simulation in Qingjiang River Basin based on WRF-hydro model[J].Journal of China Hydrology41(3): 63-68+18.DOI: 10.19797/j.cnki.1000-0852. 20190429 .
null
郭良, 丁留谦, 孙东亚, 等, 2018.中国山洪灾害防御关键技术[J].水利学报49(9): 1123-1136.DOI: 10.13243/j.cnki.slxb. 20180728.Guo L
null
Ding L Q Sun D Y, et al, 2018.Key techniques of flash flood disaster prevention in China[J].Journal of Hydraulic Engineering49(9): 1123-1136.DOI: 10.13243/j.cnki.slxb.20180728 .
null
雷晓辉, 王浩, 廖卫红, 等, 2018.变化环境下气象水文预报研究进展[J].水利学报49(1): 9-18.DOI: 10.13243/j.cnki.slxb. 20170750.Lei X H
null
Wang H Liao W H, et al, 2018.Advances in hydro-meteorological forecast under changing environment[J].Journal of Hydraulic Engineering49(1): 9-18.DOI: 10.13243/j.cnki.slxb.20170750 .
null
刘洪波, 菅浩然, 孙明坤, 2021.WRF-Hydro模型在典型中小流域的日径流模拟研究[J].水文41(4): 48-55.DOI: 10.19797/j.cnki.1000-0852.20200196.Liu H B
null
Jian H R Sun M K2021.Daily discharge simulation of small and medium-sized humid and semi-humid basins using WRF-Hydro Model[J].Journal of China Hydrology41(4): 48-55.DOI: 10.19797/j.cnki. 1000-0852.20200196 .
null
刘松楠, 汪君, 王会军, 2021.多源降水在门头沟山洪模拟中的应用及比较[J].气象47(7): 817-829.DOI: 10.7519/j.issn. 1000-0526.2021.07.005.Liu S N
null
Wang J Wang H J2021.Application and comparison of multi-source rainfall data in the simulation of flash flood in Mentougou of Beijing[J].Meteorological Monthly47(7): 817-829.DOI: 10.7519/j.issn.1000-0526.2021.07.005 .
null
刘维成, 沙宏娥, 肖玮, 等, 2022.基于地理地形因子动态调整的复杂地形区雷达定量估测降水技术[J].高原气象41(3): 708-720.DOI: 10.7522/j.issn.1000-0534.2021.00022.Liu W C
null
Sha H E Xiao W, et al, 2022.Radar quantitative precipitation estimation in complex terrain based on dynamic adjustment of geographical terrain factors[J].Plateau Meteorology41(3): 708-720.DOI: 10.7522/j.issn.1000-0534.2021.00022 .
null
沈程锋, 李国平, 2022.基于GPM资料的四川盆地及周边地区夏季 地形降水垂直结构研究[J].高原气象41(6): 1532-1543.DOI: 10.7522/j.issn.1000-0534.2021.0116.Shen C F
null
Li G P2022.The vertical structure of orographic precipitation during warm season in the Sichuan Basin and its surrounding areas by using GPM dual-frequency spaceborne precipitation radar[J].Plateau Meteorology41(6): 1532-1543.DOI: 10.7522/j.issn. 1000-0534.2021.0116 .
null
水利部水文局, 2008. GB/T22482 2008 水文情报预报规范 [S].北京: 中国标准出版社, 5-6.Bureau of Hydrology, Ministry of Water Resources of China, 2008.GB/T22482 2008 specification for hydrological information and forecast[S].Beijing: Standards Press of China, 5-6.
null
宋林烨, 陈明轩, 程丛兰, 等, 2019.京津冀夏季雷达定量降水估测的误差统计及定量气候校准[J].气象学报77(3): 497-515.DOI: 10.11676/qxxb2019.022.Song L Y
null
Chen M X Chen C L, et al, 2019.Characteristics of summer QPE error and a climatological correction method over Beijing Tianjin-Hebei region[J].Acta Meteorologica Sinica77(3): 497-515.DOI: 10.11676/qxxb2019.022 .
null
粟运, 师春香, 毛文书, 等, 2022.基于CLDAS-Prcp多源融合降水产品的WRF-Hydro模式在綦江流域的水文效用[J].高原气象41 (3): 617-629.DOI: 10.7522/j.issn.1000-0534.2021. 00073.Li Y
null
Shi C X Mao W S, et al, 2022.Hydrological utility of CLDAS-prcp multi-source fusion precipitation products in Qijiang River Basin—taking WRF-Hydro Model as an example[J].Plateau Meteorology41(3): 617-629.DOI: 10.7522/j.issn.1000-0534.2021.00073 .
null
王汉涛, 张潇潇, 2019.渠溪河流域GPM IMERG卫星降水对地面站点降水的可替代性研究[J].水电能源科学37(6): 9-11.
null
Wang H T Zhang X X2019.Study on substitution of GPM IMERG satellite precipitation for ground station precipitation in Quxi River Basin[J].Water Resources and Power37(6): 9-11.
null
熊俊楠, 李进, 程维明, 等, 2019.西南地区山洪灾害时空分布特征及其影响因素[J].地理学报74(7): 1374-1391.DOI: 10. 11821/dlxb201907008.Xiong J N
null
Li J Cheng W M, et al, 2019.Spatial-temporal distribution and the influencing factors of mountain flood disaster in southwest China[J].Acta Geographica Sinica74(7): 1374-1391.DOI: 10.11821/dlxb201907008 .
null
闫燕, 刘罡, 何军, 等, 2020.重庆地区卫星及再分析降水资料评估[J].高原气象39(3): 594-608.DOI: 10.7522/j.issn.1000-0534.2019.00040.Yan Y
null
Liu G He J, et al, 2020.Assessment of satellite and reanalysis precipitation data in Chongqing [J].Plateau Meteorology39 (3): 594-608.DOI: 10.7522/j.issn.1000-0534.2019.00040 .
null
殷志远, 杨芳, 王斌, 等, 2020.基于雷达估算降雨的湖北漳河流域径流模拟研究[J].自然灾害学报29(1): 143-151.DOI: 10.13577/j.jnd.2020.0115.Yin Z Y
null
Yang F Wang B, et al, 2020.Research on runoff simulation of Zhanghe Basin based on radar estimation precipitation[J].Journal of Natural Disasters29(1): 143-151.DOI: 10.13577/j.jnd.2020.0115 .
null
俞琳飞, 张永强, 张佳华, 等, 2020.卫星降水产品在太行山区的适用性初步评估[J].高原气象39(4): 819-829.DOI: 10.7522/ j.issn.1000-0534.2020.00007.Yu L F
null
Zhang Y Q Zhang J H, et al, 2020.Preliminarily evaluate the applicability of satellite precipitation products over the Taihang Mountains[J].Plateau Meteorology39(4): 819-829.DOI: 10.7522/j.issn.1000-0534.2020.00007 .
null
张哲, 戚友存, 朱自伟, 等, 2021.深圳S波段与X波段双偏振雷达在定量降水估计中的应用[J].气象学报79(5): 786-803.DOI: 10.11676/qxxb2021.042.Zhang Z
null
Qi Y C Zhu Z W, et al, 2021.Application of radar quantitative precipitation estimation using S-band and X-band polarimetric radars in Shenzhen[J].Acta Meteorologica Sinica79(5): 786-803.DOI: 10.11676/qxxb2021. 042 .
Outlines

/