A Comparative Study on the Summer Raindrop Size Distribution Among Areas over the Central and Eastern Qinghai-Xizang (Tibetan) Plateau and the Western Sichuan Basin
Received date: 2022-10-19
Revised date: 2023-04-03
Online published: 2024-01-11
To promote the understanding of precipitation microphysical characteristics and differences in the central and eastern Qinghai-Xizang (Tibetan) Plateau and the Sichuan Basin, disdrometer measurements collected at Naqu, Yushu, Linzhi, Batang, Luding, and Chengdu from July to August 2019 and 2020 are utilized to comprehensively investigate the characteristics and differences of raindrop size distributions (RSDs) among the six different areas.Meanwhile, local empirical relations between the Gamma shape parameter and slope parameter and between the reflectivity factor and rain rate are proposed and compared.The results show that RSDs in the basin and adjacent areas (Chengdu and Luding) are generally wider and have higher number concentrations of medium-to-large raindrops (diameter ≥1.0 mm) than those in the plateau areas (Naqu, Yushu, Linzhi, and Batang) due to the contribution of more strong convective precipitation.In contrast, RSDs in the plateau areas are narrower and possess higher number concentrations of small raindrops (diameter <1.0 mm) due to more occurrences of stratiform and weak-convective precipitation.RSDs gradually become wider with higher number concentrations as the increase of rainfall intensity both in the six observation areas.The RSD differences among the six observation areas can also change with the rain rate.Specifically, when the rain rate exceeds 0.1 mm·h-1, the increase of the number concentration of small raindrops with increasing rain rate is significantly greater in Naqu and Linzhi than in other areas, and can gradually exceed that in Chengdu.When the rain rate exceeds 5 mm·h-1, the differences in the number concentrations of medium-to-large raindrops between Chengdu and Luding and other plateau areas also gradually become larger.With the same shape parameters, the slope parameters in Chengdu and Luding are smaller than in other areas, indicating that they possess a slower decreasing rate of raindrop number concentration with increasing particle size than that in other plateau areas.Under the same radar echo intensities (reflectivity factor), rain rates of stratiform precipitation in Naqu and Linzhi are greater than in other regions.The rain rate of convective precipitation in Linzhi is also greater than that in other areas when the radar echo is below 40 dBZ, but the rain rate of convective precipitation in Naqu can be smaller than that in other areas when the radar echo is greater than 40 dBZ.
Yanxia LIU , Jun WEN , Xiaolin XIE . A Comparative Study on the Summer Raindrop Size Distribution Among Areas over the Central and Eastern Qinghai-Xizang (Tibetan) Plateau and the Western Sichuan Basin[J]. Plateau Meteorology, 2024 , 43(1) : 28 -41 . DOI: 10.7522/j.issn.1000-0534.2023.00033
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | Fulton, R A, |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 常祎, 郭学良, 2016.青藏高原那曲地区夏季对流云结构及雨滴谱分布日变化特征[J].科学通报, 61(15): 1706-1720.DOI: 10.1360/N972015-01292.Chang W , |
null | |
null | |
null | |
null | 陈玲, 周筠珺, 2015.青藏高原和四川盆地夏季降水云物理特性差异[J].高原气象, 34(3): 621-632.DOI: 10.7522/j.issn.1000-0534.2014.00036.Chen L , |
null | |
null | 陈普晨, 李忠勤, 王璞玉, 等, 2023.高寒山区固态降水观测对比研究[J].高原气象, 42(1): 116-127.DOI: 10.7522/j.issn.1000-0534.2021.0116.Chen P C , |
null | |
null | 丁一汇, 王绍武, 郑景云, 等, 2015.中国气候[M].北京: 科学出版社.Ding Y H,Wang S W,Zheng J Y,et al,2015.Climate of China[M].Beijing: Science Press. |
null | 黄泽文, 彭思越, 张浩然, 等, 2022.福建安溪雨滴谱特征[J].应用气象学报,33(2): 205-217.DOI: 10.11898/1001-7313. 20220207.Huang Z W , |
null | |
null | |
null | |
null | 李典,白 爱娟, 薛羽君, 等, 2014.青藏高原和四川盆地夏季对流性降水特征的对比分析[J].气象, 40(3): 280-289.DOI: 10. 7519/j.issn.1000-0526.2014.03.003.Li D , |
null | |
null | 李慧, 银燕, 单云鹏, 等, 2018.黄山层状云和对流云降水不同高度的雨滴谱统计特征分析[J].大气科学, 42(2): 268-280.DOI: 10. 3878/j.issn.1006-9895.1705.16291.Li H , |
null | |
null | 李山山,王 晓芳, 万蓉, 等, 2020.青藏高原东坡不同海拔区域的雨滴谱特征[J].高原气象, 39(5): 899-911.DOI: 10.7522/j.issn.1000-0534.2019.00086.Li S S , |
null | |
null | 李嗣源, 2022.藏东南局地山谷风环流在地形云和降水形成中的作用[D].北京: 中国气象科学研究院.Li S Y, 2022.The role of local valley wind circulation in the formation of topographic cloud and precipitation in southeast Tibet[D].Beijing: Chinese Academy of Meteorological Sciences. |
null | 刘彦, 苏德斌, 杨宁, 等, 2023.基于二维雨滴谱仪的巴彦淖尔地区降雹谱个例分析[J].高原气象,42(3): 748-757.DOI: 10.7522/j.issn.1000-0534.2022.00059.Liu Y , |
null | |
null | 彭旺, 李琼, 魏加华, 等, 2022.柴达木盆地东北缘山区和平原区雨滴谱特征对比研究[J].高原气象, 41(6): 1471-1480.DOI: 10.7522/j.issn.1000-0534.2021.00122.Peng W , |
null | |
null | 沈程锋, 李国平, 2022.基于GPM资料的四川盆地及周边地区夏季地形降水垂直结构研究[J].高原气象, 41(6): 1532-1543.DOI: 10.7522/j.issn.1000-0534.2021.0116.Shen C F , |
null | |
null | 王飞, 李集明, 姚展予, 等, 2022.我国人工增雨作业效果定量评估研究综述[J].气象, 48(8): 945-962.DOI: 10.7519/j.issn. 1000-0526.2022.012701.Wang F , |
null | |
null | 王改利, 周任然, 扎西索郎, 等, 2021.青藏高原墨脱地区云降水综合观测及初步统计特征分析[J].气象学报, 79(5): 841-852.DOI: 10.11676/qxxb2021.054.Wang G L , |
null | |
null | 王俊, 王文青, 王洪, 等, 2021.短时强降水和冰雹云降水个例雨滴谱特征分析[J].高原气象, 40(5): 1071-1086.DOI: 10.7522/ j.issn.1000-0534.2020.00091.Wang J , |
null | |
null | 吴亚昊, 刘黎平, 周筠珺, 等, 2016.雨滴谱的变化对降水估测的影响研究[J].高原气象, 35(1): 220-230.DOI: 10.7522/j.issn. 1000-0534.2014.00093.Wu Y H , |
null | |
null | 赵城城, 张乐坚, 梁海河, 等, 2021.北京山区和平原地区夏季雨滴谱特征分析[J].气象, 47(7): 830-842.DOI: 10.7519/j.issn. 1000-0526.2021.07.006.Zhao C C , |
null | |
null | 左园园, 郑佳锋, 贺婧姝, 等, 2022.一次高原涡过境的不同云-降水垂直结构和特征研究[J].高原气象, 41(5): 1251-1265.DOI: 10.7522/j.issn.1000-0534.2021.00059.Zuo Y Y , |
null |
/
〈 |
|
〉 |