Multi-Scenario Projection of Future Precipitation over the Qinghai-Xizang (Tibetan) Plateau Based on CMIP6 Model Assessment Results
Received date: 2022-12-02
Revised date: 2023-03-28
Online published: 2024-01-11
As a climate-sensitive region, precipitation over the Qinghai-Xizang (Tibetan) Plateau significantly impacts the water cycle and the climate of East Asia.Therefore, it is important to study its changes.Precipitation is an important variable in the global hydrological cycle and one of the major climate systems affected by climate change.To investigate the ability of the global climate models to simulate precipitation over the Qinghai-Xizang (Tibetan) Plateau and examine possible changes in future precipitation under the new model and scenarios, this paper uses the latest monthly precipitation data from the 31 climate models of the Coupled Model Intercomparison Project 6 (CMIP6) and the CN05.1 precipitation observation data set provided by the National Climate Center to evaluate the ability of the CMIP6 model to simulate precipitation over the Qinghai-Xizang (Tibetan) Plateau.Furthermore, better models are selected to project the future precipitation of the Qinghai-Xizang (Tibetan) Plateau under different Shared Socioeconomic Pathway (SSP) scenarios.The results show that the model distribution of observed precipitation over the Qinghai-Xizang (Tibetan) Plateau from 1995 to 2014 is characterized by a decrease from southeast to northwest and a summer precipitation concentration.Most of the models can simulate the precipitation distribution and seasonal trend, but almost all of them overestimate the precipitation phenomenon, and the average precipitation of multiple modes is 102% higher than that observed.In general, the latest model of CMIP6 has a poor ability to simulate precipitation over the Qinghai-Xizang (Tibetan) Plateau, and the average relative deviation index of the model from the observation is 102%, indicating that most of the models are not satisfactory, and EC-Earth3-Veg-LR, MPI-ESM1-2-LR, EC-Earth3-Veg, and MRI-ESM2-0 are selected as the better modes after quantitative analysis of all the models, which can roughly reflect the precipitation characteristics of the Qinghai-Xizang (Tibetan) Plateau.Climate models show the slowest increase of precipitation over the Qinghai-Xizang (Tibetan) Plateau under the SSP1-2.6 scenario and the fastest increase under SSP5-8.5.From SSP1-2.6 in the small radiative forcing scenario to SSP5-8.5 in the large scenario, the recent (from 2021 to 2040) precipitation increase on the plateau is difficult to find a large difference in each scenario, but there is a significant increase in the mid (from 2041 to 2060) and late (from 2081 to 2100) scenarios, indicating that carbon emission intensity has a small impact in the short term and a large impact in the long term.The future increase in precipitation mainly occurs in the area south of the Nianqing Tanggula Mountains, from a seasonal point of view, the summer increase is the largest, followed by spring and autumn, the smallest increase is in winter, so we should pay attention to the future summer and spring precipitation changes over the Qinghai-Xizang (Tibetan) Plateau and take coping measures.
Boyuan LI , Qin HU . Multi-Scenario Projection of Future Precipitation over the Qinghai-Xizang (Tibetan) Plateau Based on CMIP6 Model Assessment Results[J]. Plateau Meteorology, 2024 , 43(1) : 59 -72 . DOI: 10.7522/j.issn.1000-0534.2023.00029
null | |
null | |
null | |
null | |
null | |
null | |
null | IPCC, 2021.Climate change 2021: the physical science basis: contribution of working group I to the sixth assessment report of the Intergovernmental Panel on Climate Change[M].Cambridge: Cambridge University Press, In press.DOI: 10.1017/9781009157896 . |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 陈炜, 姜大膀, 王晓欣, 2021.CMIP6 模式对青藏高原气候的模拟能力评估与预估研究[J].高原气象, 40(6): 1455-1469.DOI: 10.7522/j.issn.1000-0534.2021.zk003.Chen W , |
null | |
null | 冯蕾, 周天军, 2017.20 km高分辨率全球模式对青藏高原夏季降水变化的预估[J].高原气象, 36(3): 587-595.DOI: 10.7522/j.issn.1000-0534.2016.00045.Feng L , |
null | |
null | 胡芩, 姜大膀, 范广洲, 2014.CMIP5 全球气候模式对青藏高原地区气候模拟能力评估[J].大气科学, 38(5): 924-938.DOI: 10.3878/j.issn.1006-9895.2013.13197.Hu Q , |
null | |
null | 姜彤, 王艳君, 苏布达, 等, 2020.全球气候变化中的人类活动视角: 社会经济情景的演变[J].南京信息工程大学学报(自然科学版), 12(1): 68-80.DOI: 10.13878/j.cnki.jnuist.2020.01. 009.Jiang T , |
null | |
null | 李斐斐, 刘朝晖, 2022.CMIP5 模式对青藏高原中东部夏季降水双极型模拟能力的评估[J].海洋气象学报, 42(2): 22-32.DOI: 10.19513/j.cnki.issn.2096-3599.2022.02.003.Li F F , |
null | |
null | 卢珊, 胡泽勇, 王百朋, 等, 2020.近 56 年中国极端降水事件的时空变化格局[J].高原气象, 39(4): 683-693.DOI: 10.7522/j.issn.1000-0534.2019.00058.Lu S , |
null | |
null | 王玉琦, 鲍艳, 南素兰, 2019.青藏高原未来气候变化的热动力成因分析[J].高原气象, 38(1): 29-41.DOI: 10.7522/j.issn. 1000-0534.2018.00066.Wang Y Q , |
null | |
null | 伍清, 蒋兴文, 谢洁, 2017.CMIP5模式对西南地区气温的模拟能力评估[J].高原气象, 36(2): 358-370.DOI: 10.7522/j.issn.1000-0534.2016.00046.Wu Q , |
null | |
null | 许建伟, 高艳红, 彭保发, 等, 2020.1979-2016年青藏高原降水的变化特征及成因分析[J].高原气象, 39(2): 234-244.DOI: 10.7522/j.issn.1000-0534.2019.00029.Xu J W , |
null | |
null | 杨绚, 李栋梁, 汤绪, 2014.基于CMIP5多模式集合资料的中国气温和降水预估及概率分析[J].中国沙漠, 34(3): 795-804.DOI: 10.7522/j.issn.1000-694X.2013.00381.Yang X , |
null | |
null | 杨耀先, 胡泽勇, 路富全, 等, 2020.青藏高原近 60 年来气候变化及其环境影响研究进展[J].高原气象, 41(1): 1-10.DOI: 10.7522/j.issn.1000-0534.2021.00117.Yang Y X , |
null | |
null | 张镱锂, 李炳元, 郑度, 2014.《论青藏高原范围与面积》一文数据的发表——青藏高原范围界线与面积地理信息系数数据[J].地理学报, 69(): 65-68.DOI: 10.11821/dlxb2014S012.Zhang Y L , |
null | |
null | 赵宗慈, 罗勇, 黄建斌, 2020.未来20年全球继续变暖吗?[J].气候变化研究进展, 16(5): 652-656.DOI: 10.12006/ j.issn.1673-1719.2020.040.Zhao Z C , |
null |
/
〈 |
|
〉 |