Multi-Scenario Projection of Future Precipitation over the Qinghai-XizangTibetanPlateau Based on CMIP6 Model Assessment Results

  • Boyuan LI ,
  • Qin HU
Expand
  • College of Atmospheric Sciences,Chengdu University of Information Technology,Chengdu 610225,Sichuan,China

Received date: 2022-12-02

  Revised date: 2023-03-28

  Online published: 2024-01-11

Abstract

As a climate-sensitive region, precipitation over the Qinghai-Xizang (Tibetan) Plateau significantly impacts the water cycle and the climate of East Asia.Therefore, it is important to study its changes.Precipitation is an important variable in the global hydrological cycle and one of the major climate systems affected by climate change.To investigate the ability of the global climate models to simulate precipitation over the Qinghai-Xizang (Tibetan) Plateau and examine possible changes in future precipitation under the new model and scenarios, this paper uses the latest monthly precipitation data from the 31 climate models of the Coupled Model Intercomparison Project 6 (CMIP6) and the CN05.1 precipitation observation data set provided by the National Climate Center to evaluate the ability of the CMIP6 model to simulate precipitation over the Qinghai-Xizang (Tibetan) Plateau.Furthermore, better models are selected to project the future precipitation of the Qinghai-Xizang (Tibetan) Plateau under different Shared Socioeconomic Pathway (SSP) scenarios.The results show that the model distribution of observed precipitation over the Qinghai-Xizang (Tibetan) Plateau from 1995 to 2014 is characterized by a decrease from southeast to northwest and a summer precipitation concentration.Most of the models can simulate the precipitation distribution and seasonal trend, but almost all of them overestimate the precipitation phenomenon, and the average precipitation of multiple modes is 102% higher than that observed.In general, the latest model of CMIP6 has a poor ability to simulate precipitation over the Qinghai-Xizang (Tibetan) Plateau, and the average relative deviation index of the model from the observation is 102%, indicating that most of the models are not satisfactory, and EC-Earth3-Veg-LR, MPI-ESM1-2-LR, EC-Earth3-Veg, and MRI-ESM2-0 are selected as the better modes after quantitative analysis of all the models, which can roughly reflect the precipitation characteristics of the Qinghai-Xizang (Tibetan) Plateau.Climate models show the slowest increase of precipitation over the Qinghai-Xizang (Tibetan) Plateau under the SSP1-2.6 scenario and the fastest increase under SSP5-8.5.From SSP1-2.6 in the small radiative forcing scenario to SSP5-8.5 in the large scenario, the recent (from 2021 to 2040) precipitation increase on the plateau is difficult to find a large difference in each scenario, but there is a significant increase in the mid (from 2041 to 2060) and late (from 2081 to 2100) scenarios, indicating that carbon emission intensity has a small impact in the short term and a large impact in the long term.The future increase in precipitation mainly occurs in the area south of the Nianqing Tanggula Mountains, from a seasonal point of view, the summer increase is the largest, followed by spring and autumn, the smallest increase is in winter, so we should pay attention to the future summer and spring precipitation changes over the Qinghai-Xizang (Tibetan) Plateau and take coping measures.

Cite this article

Boyuan LI , Qin HU . Multi-Scenario Projection of Future Precipitation over the Qinghai-XizangTibetanPlateau Based on CMIP6 Model Assessment Results[J]. Plateau Meteorology, 2024 , 43(1) : 59 -72 . DOI: 10.7522/j.issn.1000-0534.2023.00029

References

null
Chen X L Liu Y M Wu G X2017.Understanding the surface temperature cold bias in CMIP5 AGCMs over the Tibetan Plateau[J].Advances in Atmospheric Sciences34(12): 1447-1460.DOI: 10.1007/s00376-017-6326-9 .
null
Cui T Li C Tian F Q2021.Evaluation of temperature and precipitation simulations in CMIP6 models over the Tibetan Plateau[J].Earth and Space Science8(7): e2020EA001620. DOI: 10. 1029/2020EA001620 .
null
Duan Q Y Phillips T J2010.Bayesian estimation of local signal and noise in multimodel simulations of climate change[J].Journal of Geophysical Research115(D18): D18123.DOI: 10. 1029/2009JD013654 .
null
He C Wang Z Q Zhou T J, et al, 2019.Enhanced latent heating over the tibetan plateau as a key to the enhanced East Asian Summer Monsoon Circulation under a warming climate[J].Journal of Climate32(11): 3373-3388.DOI: 10.1175/JCLI-D-18-0427.1 .
null
Hui P H Tang J P Wang S Y, et al, 2018.Climate change projections over China using regional climate models forced by two CMIP5 global models.Part II: projections of future climate: projections of climate over China with Multi-RCM driven by CMIP5 GCM[J].International Journal of Climatology, 38: e78-e94.DOI: 10.1002/joc.5409 .
null
Immerzeel W W Van Beek LPH Bierkens MFP2010.Climate change will affect the Asian water towers[J].Science328(5984): 1382-1385.DOI: 10.1126/science.1183188 .
null
IPCC, 2021.Climate change 2021: the physical science basis: contribution of working group I to the sixth assessment report of the Intergovernmental Panel on Climate Change[M].Cambridge: Cambridge University Press, In press.DOI: 10.1017/9781009157896 .
null
Jia K Ruan Y F Yang Y Z, et al, 2019.Assessing the performance of CMIP5 global climate models for simulating future precipitation change in the Tibetan Plateau[J].Water11(9): 1771.DOI: 10.3390/w11091771 .
null
Lun Y R Liu L Cheng L, et al, 2021.Assessment of GCMs simulation performance for precipitation and temperature from CMIP5 to CMIP6 over the Tibetan Plateau[J].International Journal of Climatology41(7): 39944018.DOI: 10.1002/joc.7055 .
null
Qiu J2008.China: the third pole[J].Nature454(7203): 393-396.DOI: 10.1038/454393a .
null
Ramesh K V Goswami P2015.Assessing reliability of regional climate projections: the case of Indian monsoon[J].Scientific Reports4(1): 4071.DOI: 10.1038/srep04071 .
null
Rangwala I Sinsky E Miller J R2013.Amplified warming projections for high altitude regions of the northern hemisphere mid-latitudes from CMIP5 models[J].Environmental Research Letters8(2): 024040.DOI: 10.1088/1748-9326/8/2/024040 .
null
Su F G Duan X L Chen D L, et al, 2013.Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau[J].Journal of Climate26(10): 3187-3208.DOI: 10.1175/JCLI-D-12-00321.1 .
null
Su F Zhang L Ou T, et al, 2016.Hydrological response to future climate changes for the major upstream river basins in the Tibetan Plateau[J].Global and Planetary Change, 136: 82-95.DOI: 10.1016/j.gloplacha.2015.10.012 .
null
Xue X Guo J Han B S, et al, 2009.The effect of climate warming and permafrost thaw on desertification in the Qinghai-Tibetan Plateau[J].Geomorphology108(3/4): 182-190.DOI: 10.1016/j.geomorph.2009.01.004 .
null
Yang K Wu H Qin J, et al, 2014.Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review[J].Global and Planetary Change, 112: 79-91.DOI: 10. 1016/j.gloplacha.2013.12.001 .
null
Zhu Y Y Yang S N2020.Evaluation of CMIP6 for historical temperature and precipitation over the Tibetan Plateau and its comparison with CMIP5[J].Advances in Climate Change Research, 11: 239-251.DOI: 10.1016/j.accre.2020.08.001 .
null
陈炜, 姜大膀, 王晓欣, 2021.CMIP6 模式对青藏高原气候的模拟能力评估与预估研究[J].高原气象40(6): 1455-1469.DOI: 10.7522/j.issn.1000-0534.2021.zk003.Chen W
null
Jiang D B Wang X X2021.Evaluation and projection of CMIP6 models for climate over the Qinghai-Xizang (Tibetan) Plateau[J].Plateau Meteorology40(6): 1455-1469.DOI: 10.7522/j.issn. 1000-0534.2021.zk003 .
null
冯蕾, 周天军, 2017.20 km高分辨率全球模式对青藏高原夏季降水变化的预估[J].高原气象36(3): 587-595.DOI: 10.7522/j.issn.1000-0534.2016.00045.Feng L
null
Zhou T J2017.Projection of summer precipitation change over the Qinghai-Tibetan Plateau with a 20 km high-resolution Global Climate Model[J].Plateau Meteorology36(3): 587-595.DOI: 10.7522/j.issn. 1000-0534.2016.00045 .
null
胡芩, 姜大膀, 范广洲, 2014.CMIP5 全球气候模式对青藏高原地区气候模拟能力评估[J].大气科学38(5): 924-938.DOI: 10.3878/j.issn.1006-9895.2013.13197.Hu Q
null
Jiang D B Fan G Z2014.Evaluation of CMIP5 Models over the Qinghai-Tibetan Plateau[J].Chinese Journal of Atmospheric Sciences38(5): 924-938.DOI: 10.3878/j.issn.1006-9895.2013.13197 .
null
姜彤, 王艳君, 苏布达, 等, 2020.全球气候变化中的人类活动视角: 社会经济情景的演变[J].南京信息工程大学学报(自然科学版)12(1): 68-80.DOI: 10.13878/j.cnki.jnuist.2020.01. 009.Jiang T
null
Wang Y J Su B D, et al, 2020.Perspectives of human activities in global climate change: evolution of socio-economic scenarios[J].Journal of Nanjing University of Information Science & Technology (Natural Science Edition)12(1): 68-80.DOI: 10.13878/j.cnki.jnuist.2020.01.009 .
null
李斐斐, 刘朝晖, 2022.CMIP5 模式对青藏高原中东部夏季降水双极型模拟能力的评估[J].海洋气象学报42(2): 22-32.DOI: 10.19513/j.cnki.issn.2096-3599.2022.02.003.Li F F
null
Liu C H2022.Evaluation of simulation performance of CMIP5 models for the dipole oscillation of summer precipitation over the central and eastern Tibetan Plateau[J].Journal of Marine Meteorology42(2): 22-32.DOI: 10.19513/j.cnki.issn.2096-3599.2022. 02.003 .
null
卢珊, 胡泽勇, 王百朋, 等, 2020.近 56 年中国极端降水事件的时空变化格局[J].高原气象39(4): 683-693.DOI: 10.7522/j.issn.1000-0534.2019.00058.Lu S
null
Hu Z Y Wang B P, et al, 2020.Spatio-temporal patterns of extreme precipitation events over China in recent 56 Years[J].Plateau Meteorology39(4): 683-693.DOI: 10.7522/j.issn.1000-0534.2019.00058 .
null
王玉琦, 鲍艳, 南素兰, 2019.青藏高原未来气候变化的热动力成因分析[J].高原气象38(1): 29-41.DOI: 10.7522/j.issn. 1000-0534.2018.00066.Wang Y Q
null
Bao Y Nan S L2019.Dynamic and thermodynamic effects on climate changes over the Qinghai-Tibetan Plateau in response to global warming[J].Plateau Meteorology38(1): 29-41.DOI: 10.7522/j.issn.1000-0534. 2018.00066 .
null
伍清, 蒋兴文, 谢洁, 2017.CMIP5模式对西南地区气温的模拟能力评估[J].高原气象36(2): 358-370.DOI: 10.7522/j.issn.1000-0534.2016.00046.Wu Q
null
Jiang X W Xie J2017.Evaluation of surface air temperature in southwestern China simulated by the CMIP5 models[J].Plateau Meteorology36(2): 358-370.DOI: 10.7522/j.issn.1000-0534.2016.00046 .
null
许建伟, 高艳红, 彭保发, 等, 2020.1979-2016年青藏高原降水的变化特征及成因分析[J].高原气象39(2): 234-244.DOI: 10.7522/j.issn.1000-0534.2019.00029.Xu J W
null
Gao Y H Peng B F, et al, 2020.Change characteristics of precipitation and its cause during 1979-2016 over the Qinghai-Tibetan Plateau[J].Plateau Meteorology39(2): 234-244.DOI: 10.7522/j.issn. 1000-0534.2019.00029 .
null
杨绚, 李栋梁, 汤绪, 2014.基于CMIP5多模式集合资料的中国气温和降水预估及概率分析[J].中国沙漠34(3): 795-804.DOI: 10.7522/j.issn.1000-694X.2013.00381.Yang X
null
Li D L Tang X2014.Probability assessment of temperature and precipitation over China by CMIP5 multi-model ensemble[J].Journal of Desert Research34(3): 795-804.DOI: 10.7522/j.issn. 1000-694X.2013.00381 .
null
杨耀先, 胡泽勇, 路富全, 等, 2020.青藏高原近 60 年来气候变化及其环境影响研究进展[J].高原气象41(1): 1-10.DOI: 10.7522/j.issn.1000-0534.2021.00117.Yang Y X
null
Hu Z Y Lu F Q, et al, 2020.Progress of recent 60 years' climate change and its environmental impacts on the Qinghai-Xizang Plateau[J].Plateau Meteorology41(1): 1-10.DOI: 10.7522/j.issn.1000-0534.2021.00117 .
null
张镱锂, 李炳元, 郑度, 2014.《论青藏高原范围与面积》一文数据的发表——青藏高原范围界线与面积地理信息系数数据[J].地理学报69(): 65-68.DOI: 10.11821/dlxb2014S012.Zhang Y L
null
Li B Y Zheng D2014.The publication of the data of the paper "On the Extent and Area of the Tibetan Plateau" — the data of the limit of the extent and the geographic information coefficient of the area of the Tibetan Plateau[J].Acta Geographica Sinica69(): 65-68.DOI: 10.11821/dlxb2014S012 .
null
赵宗慈, 罗勇, 黄建斌, 2020.未来20年全球继续变暖吗?[J].气候变化研究进展16(5): 652-656.DOI: 10.12006/ j.issn.1673-1719.2020.040.Zhao Z C
null
Luo Y Huang J B2020.Will global warming continue in the next 20 years?[J].Climate Change Research16(5): 652-656.DOI: 10.12006/ j.issn. 1673-1719.2020.040 .
Outlines

/