Study on Precipitation Observation and Retrieval Methods of X-band Phased Array Polarization Weather Radar in Motuo, Xizang
Received date: 2022-10-24
Revised date: 2023-05-06
Online published: 2024-01-11
The variation in precipitation in Motuo is closely associated with the transport of water vapor from the India Ocean and the Bay of Bengal to inland China, the Asia summer monsoon, and the progression of the rain band in eastern China.A rain band with an average annual precipitation of more than 2000 mm has been formed due to the interaction of the distinctive topography of Motuo and the southwest air flow.However, it has been challenging to observe precipitation in Motuo due to the peculiar topography, insufficient electricity, and inadequate traffic conditions.An X-band dual-polarization phased array radar (XPAR) is installed during the Second Qinghai-Xizang Plateau Scientific Expedition and Research Program.The advanced dual-polarization phased array radar is used to continuously observe the precipitation in Motuo and is of great significance to the research of the local ecological environment and cloud water resources, and the impact on downstream.Based on XPAR data collected for the period from June to August 2020, we selected the radial precipitation echoes using a statistical method, and after integrating the precipitation echoes, we created the hybrid elevation angle that tallied with the topography of Motuo.Using DSD data from Motuo in 2019, we calculated radar parameters and obtained the localized QPE (Quantitative Precipitation Estimation) formulas of X-band weather radar.We selected three processes of precipitation with different cumulative precipitation, duration, and average rain rate from July to August 2020, calculated Φ DP (Differential Propagation Phase Shift) using the linear programming method, K DP (Differential Propagation Phase Shift Rate) using the ordinary least square method, and corrected Z H (Reflectivity Factor) using the “ZPHI” rain profiling algorithm.Using Z H and K DP as thresholds, we estimated precipitation piecewise utilizing R(Z H) and R(K DP), and contrasted results with the QPE results from the R(Z H) and R(K DP) methods, respectively.And explored the relationship between precipitation distribution and the topography of Motuo based on the QPE results.The quality of Z H and K DP had been significantly improved.The hybrid elevation angle constructed using a statistical method had a larger echo area than the hybrid elevation angle constructed using STRM1 v3.0 data.The PPI (Plane Position Indicator) diagrams of three precipitation (radar parameters at typical times, and average radar parameters) processes can show the relationship between the variation in precipitation and the topography of Motuo.The QPE formulas and Piecewise Estimation Method (PEM) used in the research functioned well, and each evaluation parameter performed well.The following conclusions are drawn: (1) The hybrid elevation angle constructed using the statistical method outperformed the hybrid elevation angle constructed using topography data in QPE, due to the drastic variation of the topography around the XPAR in Motuo; (2) The data quality control method, the QPE formulas, and the PEM utilized in the research all performed well at precipitation retrieval.The estimation error of the QPE results was significantly reduced, without causing significant changes in CC and RMSE; (3) Precipitation in Motuo may occur and grow as a result of the lifting of the southwest air flow by northern slopes of the valley.Clouds with higher rain rates and smaller drops are found near the level bottom of the valley.
Haoran CHEN , Fei GENG , Liping LIU , Hua YANG . Study on Precipitation Observation and Retrieval Methods of X-band Phased Array Polarization Weather Radar in Motuo, Xizang[J]. Plateau Meteorology, 2024 , 43(1) : 99 -113 . DOI: 10.7522/j.issn.1000-0534.2023.00039
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 曹杨, 陈洪滨, 苏德斌, 2018.C波段双线偏振天气雷达零度层亮带识别和订正[J].应用气象学报, 29(1): 84-96.DOI: 10. 11898/1001-7313.20180108.Cao Y , |
null | |
null | 陈萍, 李波, 2018.藏东南水汽输送特征分析及其影响[J].南方农业, 12(9): 124-125.DOI: 10.19415/j.cnki.1673-890x.2018.09.066.Chen P , |
null | |
null | 陈奕辰, 刘锦丽, 段树, 等, 2012.X波段双极化雷达在北京夏季降水估测中的应用[J].气候与环境研究, 17(3): 292-302.DOI: 10.3878/j.issn.1006-9585.2012.10115.Chen Y C , |
null | |
null | 傅云飞, 李宏图, 自勇, 2007.TRMM 卫星探测青藏高原谷地的降水云结构个例分析[J].高原气象, 26(1): 98-106. |
null | |
null | 高登义, 邹捍, 王维, 1985.雅鲁藏布江水汽通道对降水的影响[J].山地研究, 3(4): 239-249. |
null | |
null | 江吉喜, 范梅珠, 2002.夏季青藏高原上的对流云和中尺度对流系统[J].大气科学, 26(2): 263-170.DOI: 10.3878/j.issn.1006-9895.2002.02.12.Jiang J X , |
null | |
null | 刘俊, 黄兴友, 何雨岑, 等, 2015.X波段相控阵气象雷达回波数据的对比分析[J].高原气象, 34(4): 1167-1176.DOI: 10.7522/ j.issn.1000-0534.2014.00043.Liu J , |
null | |
null | 刘黎平, 钱永甫, 王致君, 等, 1996.双线偏振雷达测雨效果的对比分析[J].大气科学, 20(5): 615-619.DOI: 10.3878/j.issn. 1006-9895.1996.05.13.Liu L P , |
null | |
null | 雷林平, 2014.基于Savitzky-Golay算法的曲线平滑去噪[J].电脑信息与技术, 22(5): 30-31.DOI: 10.19414/j.cnki.1005-1228.2014.05.011.Lei L P , 2014.Curve smooth denoising based on Savitzky-Golay Algorithm[J].Computer and Information Technology, 22(5): 30-31.DOI: 10.19414/j.cnki.1005-1228.2014.05.011 . |
null | 刘黎平, 吴林林, 吴翀, 等, 2014.X波段相控阵天气雷达对流过程观测外场试验及初步结果分析[J].大气科学, 38(6): 1079-1094.DOI: 10.3878/j.issn.1006-9895.1402.13253.Liu L P , |
null | |
null | 马建立, 陈明轩, 李思腾, 等, 2019.线性规划在X波段双线偏振多普勒天气雷达差分传播相移质量控制中的应用[J].气象学报, 77(3): 561-528.DOI: 10.11676/qxxb2019.023.Ma J L , |
null | |
null | 施小英, 施晓晖, 2008.夏季青藏高原东南部水汽收支气候特征及其影响[J].应用气象学报, 19(1): 41-46.DOI: 10.3969/j.issn.1001-7313.2008.01.006.Shi X Y , |
null | |
null | 王红艳, 刘黎平, 2015.新一代天气雷达降水估算的区域覆盖能力评估[J].高原气象, 34(6): 1772-1784.DOI: 10.7522/j.issn.1000-0534.2014.00122.Wang H Y , |
null | |
null | 王灵芝, 李茂善, 吕钊, 等, 2022.藏东南峡谷地区不同下垫面地表通量变化特征及其与降水的关系[J].高原气象, 41(1): 177-189.DOI: 10.7522/j.issn.1000-0534.2020.00107.Wang L Z , |
null | |
null | 王改利, 周任然, 扎西索郎, 等, 2021.青藏高原墨脱地区云降水综合观测及初步统计特征分析[J].气象学报, 79(5): 841-852.DOI: 10.11676/qxxb2021.054.Wang G L , |
null | |
null | 叶笃正, 罗四维, 朱抱真, 1957.西藏高原及其附近的流场结构和 对流层大气的热量平衡[J].气象学报, 28(2): 108-121.DOI: 10.11676/qxxb1957.010.Ye D Z , |
null | |
null | 肖艳姣, 刘黎平, 2007.三维雷达反射率资料用于层状云和对流云的识别研究[J].大气科学, 31(4): 645-654.DOI: 10.3878/j.issn.1006-9895.2007.04.09.Xiao Y J , |
null | |
null | 徐祥德, 董李丽, 赵阳, 等, 2019.青藏高原“亚洲水塔”效应和大气 水分循环特征[J].科学通报, 64(27): 2830-2841.DOI: 10.1360/TB-2019-0203.Xu X D , |
null | |
null | 徐祥德, 陶诗言, 王继志, 等, 2002.青藏高原-季风水汽输送“大三角扇型”影响域特征与中国区域旱涝异常的关系[J].气象学报, 60(3): 257-266+385.DOI: 10.11676/qxxb2002.032.Xu X D , |
null | |
null | 徐祥德, 赵天良, |
null | |
null | 张羽, 田聪聪, 傅佩玲, 等, 2020.广州 X波段双偏振相控阵天气雷达观测试验进展[J].气象科技进展, 10(6): 80-85.DOI: 10.3969/j.issn.2095-1973.2020.06.014.Zhang Y , |
null | |
null | 张蔚然, 吴翀, 刘黎平, 等, 2021.双偏振相控阵雷达与业务雷达的定量对比及观测精度研究[J].高原气象, 40(2): 424-435.DOI: 10.7522/j.issn.1000-0534.2020.00056.Zhang W R , |
null | |
null | 张强, 文军, 武月月, 等, 2021.雅鲁藏布大峡谷地区近地面-大气间水热交换特征分析[J].高原气象, 40(1): 153-166.DOI: 10.7522/j.issn.1000-0534.2021.00113.Zhang Q , |
null | |
null | 张勇, 吴胜刚, 张亚萍, 等, 2019.基于SWAN雷达拼图产品在暴雨 过程中的对流云识别及效果检验[J].气象, 45(2): 180-190.DOI: 10.7519/j.issn.1000-0526.2019.02.004.Zhang Y , |
null | |
null | 卓嘎, 徐祥德, 陈联寿, 2002.青藏高原夏季降水的水汽分布特征[J].气象科学, 22(1): 1-8.DOI: 10.3969/j.issn.1009-0827.2002.01.001.Zhuo G , |
null |
/
〈 |
|
〉 |