Two Modes of Westerly Jet over the Asian Continent in Mid-Summer and Their Relationship with East Asian Atmospheric Circulation Anomalies

  • Shuangyin LI ,
  • Yaocun ZHANG ,
  • Danqing HUANG ,
  • Xueyuan KUANG
Expand
  • School of Atmospheric Sciences,Nanjing University,Nanjing 210023,Jiangsu,China

Received date: 2023-08-05

  Revised date: 2023-12-07

  Online published: 2023-12-07

Abstract

Based on NCEP/NCAR reanalysis data, the leading modes of the westerly jet over the Asian continent during July-August from 1960 to 2019 and the associated mid-to-high latitude circulations has been investigated in this study.The results show that the first leading mode is characterized by an out-of-phase variation in the south-north direction along the jet axis, resulting in a north-south movement of the jet.The second leading mode exhibits an out-of-phase variation in the east-west direction along the Qinghai-Xizang (Tibetan) Plateau, as a southwest (northwest) - northeast (southeast) tilt of the jet stream axis, which is different from most previous studies emphasizing the intensity variations in the second mode.For the first leading mode, associated with the northward movement of the jet streams, the South Asian High (SAH) moves northward as well as the western Pacific subtropical high (WPSH) northward narrows and vice versa.Furthermore, this first leading mode is associated with the tripolar precipitation pattern over East Asia.Particularly, as the jet stream shifts northward (southward), the precipitation decreases (increases) in the Jianghuai River and increases (decreases) in South China and North China.As well, the associated temperature variations also show a tripolar pattern over the Eurasian continent, with the boundary of around 20°N and 45°N.It suggests that when the jet stream moves northward, warm (cold) conditions cover East Asia, particularly in the central and eastern regions of China, the Korean Peninsula and Japan, while cold (warm) conditions dominant Lake Baikal, the Indian Peninsula and Indochina Peninsula.As for the second leading mode, the geopotential height in the east (west) side of the SAH increases due to the southwest (northwest)-northeast (southeast) tilt of the jet axis.Additionally, the second mode is related to the precipitation anomalies in the high latitudes of West Asia, Central Asia, and the Indian Peninsula.This mode is particularly important for the double dipole temperature pattern over the Eurasian continent.When the jet stream axis presents a southwest (northwest)-northeast (southeast) tilt, significant positive (negative) temperature anomalies are observed in the middle latitudes of East Asia and specifically in the high latitudes of West Asia.

Cite this article

Shuangyin LI , Yaocun ZHANG , Danqing HUANG , Xueyuan KUANG . Two Modes of Westerly Jet over the Asian Continent in Mid-Summer and Their Relationship with East Asian Atmospheric Circulation Anomalies[J]. Plateau Meteorology, 2024 , 43(4) : 895 -904 . DOI: 10.7522/j.issn.1000-0534.2023.00097

References

null
Brill K F Uccellini L W Burkhart R P, et al, 1985.Numerical simulations of a transverse indirect circulation and low-level jet in the exit region of an upper-level jet[J].Journal of the Atmospheric Sciences42(12): 1306-1320.DOI: 10.1175/1520-0469(1985)042<1306: NSOATI>2.0.CO; 2 .
null
Du Y Li T Xie Z Q, et al, 2015.Interannual variability of the Asian subtropical westerly jet in boreal summer and associated with circulation and SST anomalies[J].Climate Dynamics46(7/8): 2673-2688.DOI: 10.1007/s00382-015-2723-x .
null
Harris I Osborn T J Jones P, et al, 2020.Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset[J].Scientific Data7(1): 109.DOI: 10.1038/s41597-020-0453-3 .
null
Hersbach H Bell B Berrisford P, et al, 2020.The ERA5 global reanalysis[J].Quarterly Journal of the Royal Meteorological Society146(730): 1999-2049.DOI: 10.1002/qj.3803 .
null
Hong X W Lu R Y2016.The meridional displacement of the summer Asian jet, silk road pattern, and tropical sst anomalies[J].Journal of Climate29(10): 3753-3766.DOI: 10.1175/jcli-d-15-0541.1 .
null
Kalnay E Kanamitsu M Kistler R, et al, 1996.The NCEP/NCAR 40-year reanalysis project[J].Bulletin of the American Meteorological Society77(3): 437-471.DOI: 10.1175/1520-0477(1996)077<0437: Tnyrp>2.0.Co; 2 .
null
Kuang X Y Zhang Y C2005.Seasonal variation of the East Asian Subtropical Westerly Jet and its association with the heating field over East Asia[J].Advances in Atmospheric Sciences22(6): 831-840.DOI: 10.1007/BF02918683 .
null
Lai X Gong Y F Cen S X, et al, 2020.Impact of the westerly jet on rainfall/runoff in the source region of the Yangtze River during the flood season[J].Advances in Meteorology, 2020, 6726347.DOI: 10.1155/2020/6726347 .
null
Li M X Ma Z G2018.Decadal changes in summer precipitation over arid northwest China and associated atmospheric circulations[J].International Journal of Climatology38(12): 4496-4508.DOI: 10.1002/joc.5682 .
null
Liang X Z Wang W C1998.Associations between China monsoon rainfall and tropospheric jets[J].Quarterly Journal of the Royal Meteorological Society124(552): 2597-2623.DOI: 10.1002/qj.49712455204 .
null
Lin Z D Lu R Y2005.Interannual meridional displacement of the east Asian upper-tropospheric jet stream in summer[J].Advances in Atmospheric Sciences22(2): 199-211.DOI: 10.1007/BF02918509 .
null
Murray R Daniels S M1953.Transverse flow at entrance and exit to jet streams[J].Quarterly Journal of the Royal Meteorological Society79(340): 236-241.DOI: 10.1002/qj.49708034324 .
null
Qu X Huang G2012.Impacts of tropical Indian Ocean SST on the meridional displacement of East Asian jet in boreal summer[J].International Journal of Climatology32(13): 2073-2080.DOI: 10.1002/joc.2378 .
null
Shaman J Tziperman E2007.Summertime ENSO-North African-Asian Jet teleconnection and implications for the Indian monsoons[J].Geophysical Research Letters, 34: L11702.DOI: 10.1029/2006gl029143 .
null
Wei W Zhang R H Wen M, et al, 2017.Relationship between the Asian Westerly Jet Stream and Summer Rainfall over Central Asia and North China: roles of the Indian Monsoon and the South Asian High[J].Journal of Climate30(2): 537-552.DOI: 10.1175/jcli-d-15-0814.1 .
null
Zhang Y C Kuang X Y Guo W D, et al, 2006.Seasonal evolution of the upper‐tropospheric westerly jet core over East Asia[J].Geophysical Research Letters, 33: L11708.DOI: 10.1029/2006GL026377 .
null
Zhao Y Huang A N Zhou Y, et al, 2014a.Impact of the middle and upper tropospheric cooling over Central Asia on the summer rainfall in the Tarim Basin, China[J].Journal of Climate27(12): 4721-4732.DOI: 10.1175/jcli-d-13-00456.1 .
null
Zhao Y Wang M Z Huang A N, et al, 2014b.Relationships between the West Asian subtropical westerly jet and summer precipitation in northern Xinjiang[J].Theoretical and Applied Climatology116(3/4): 403-411.DOI: 10.1007/s00704-013-0948-3 .
null
单幸, 周顺武, 王美蓉, 等, 2019.青藏高原大气热力异常对西风急流的影响[J].气象科学39(2): 206-213.DOI: 10.3969/2018jms.0018.Shan X
null
Zhou S W Wang M R, et al, 2019.Influence of atmospheric heat anomaly over the Tibetan Plateau on the westerly jet[J].Journal of the Meteorological Sciences39(2): 206-213.DOI: 10.3969/2018jms.0018 .
null
杜银, 张耀存, 谢志清, 2009.东亚副热带西风急流位置变化及其对中国东部夏季降水异常分布的影响[J].大气科学33(3): 581-592.
null
Du Y Zhang Y C Xie Z Q2009.Location variation of the East Asia subtropical westerly jet and its effect on the summer precipitation anomaly over eastern China[J].Chinese Journal of Atmospheric Sciences33(3): 581-592.
null
况雪源, 张耀存2006a.东亚副热带西风急流位置异常对长江中下游夏季降水的影响[J].高原气象, 25(3): 382-389. Kuang X Y Zhang Y C2006a.Impact of the Position Abnormalities of East Asian Subtropical Westerly Jet on Summer Precipitation in Middle-Lower Reaches of Yangtze River[J].Plateau Meteorology, 25(3): 382-389.
null
况雪源, 张耀存2006b.东亚副热带西风急流季节变化特征及其热力影响机制探讨[J].气象学报, 64(5): 564-575. Kuang X Y Zhang Y C2006b.The seasonal variation of the East Asian subtrpical westerly jet and its thermal mechanism[J].Acta Meteorologica Sinica, 64(5): 564-575.
null
李崇银, 王作台, 林士哲, 等, 2004.东亚夏季风活动与东亚高空西风急流位置北跳关系的研究[J].大气科学28(5): 641-658.
null
Li C Y Wang Z T Lin S Z, et al, 2004.The relationship between East Asian summer monsoon activity and northward jump of the upper westerly jet location[J].Chinese Journal of Atmospheric Sciences28(5): 641-658.
null
李万莉, 王可丽, 傅慎明, 等, 2008.区域西风指数对西北地区水汽输送及收支的指示性[J].冰川冻土30(1): 28-34.
null
Li W L Wang K L Fu S M, et al, 2008.The interrelationship between regional westerly index and the water vapor budget in Northwest China[J].Journal of Glaciology and Geocryology30(1): 28-34.
null
刘杰, 况雪源, 张耀存, 2010.对流层上层东半球副热带西风急流与副热带(南亚)高压的关系[J].气象科学30(1): 34-41.
null
Liu J Kuang X Y Zhang Y C2010.Relationship between the east Asia subtropical westerly jet in the upper troposphere and the subtropical south Asian high[J].Scientia Meteorologlca Sinica30(1): 34-41.
null
陆日宇, 林中达, 张耀存, 2013.夏季东亚高空急流的变化及其对东亚季风的影响[J].大气科学37(2): 331-340.DOI: 10.3878/j.issn.1006-9895.2012.12310.Lu R Y
null
Lin Z D Zhang Y C2013.Variability of the East Asian upper-tropospheric jet in summer and its impacts on the East Asian monsoon[J].Chinese Journal of Atmospheric Sciences37(2): 331-340.DOI: 10.3878/j.issn.1006-9895.2012.12310 .
null
马音, 陈文, 王林, 2011.中国夏季淮河和江南梅雨期降水异常年际变化的气候背景及其比较[J].气象学报69(2): 334-343.
null
Ma Y Chen W Wang L2011.A comparative study of the interannual variation of summer rainfall anomolies between the Huaihe Meiyu season and the Jiangnan Meiyu season and their climate background[J].Acta Meteorologica Sinica69(2): 334-343.
null
全美兰, 刘海文, 朱玉祥 等, 2013.高空急流在北京“7·21”暴雨中的动力作用[J].气象学报71(6): 1012-1019.DOI: 10.11676/qxxb2013.092.Quan M L
null
Liu H W Zhu Y X, et al, 2013.Study of the dynamic effects of the upper-level jet stream on the Beijing rainstorm of 21 July 2012[J].Acta Meteorologica Sinica71(6): 1012-1019.DOI: 10.11676/qxxb2013.092 .
null
任国强, 赵勇, 2022.副热带西风急流与中亚夏季降水的关系[J].高原气象41(6): 1425-1434.
null
Ren G Q Zhao Y2022.Relationship between the subtropical westerly jet and summer rainfall over Central Asia from 1961 to 2016[J].Plateau Meteorology41(6): 1425-1434.
null
陶诗言, 赵煜佳, 陈晓敏, 1958.东亚的梅雨期与亚洲上空大气环流季节变化的关系[J].气象学报29(2): 119-134.DOI: 10.7522/j.issn.1000-0534.2021.00082.Tao S Y
null
Zhao Y J Chen X M1958.The relationship between May-yu in far east and the behaviour of circulation over Asia[J].Acta Meteorologica Sinica29(2): 119-134.DOI: 10.7522/j.issn.1000-0534.2021.00082 .
null
王灏, 胡泽勇, 杨耀先, 等, 2023.近60 年青藏高原季风期降水的南北变化特征及机理研究[J].高原气象42(4): 848-857.DOI: 10.7522/j.issn.1000-0534.2023.00034.Wang H
null
Hu Z Y Yang Y X, et al, 2023.The changing features and the mechanism of the precipitation in Southern-Northern Qinghai-Xizang Plateau during monsoon period in last 60 years[J].Plateau Meteorology42(4): 848-857.DOI: 10.7522/j.issn.1000-0534.2023.00034 .
null
王天竺, 赵勇, 2021.青藏高原和热带印度洋5月热力异常与新疆夏季降水的关系[J].高原气象40(1): 1-14.DOI: 10.7522/j.issn.1000-0534.2020.00003.Wang T Z
null
Zhao Y2021.Relationships between thermal anomalies over the Qinghai-Xizang Plateau and Tropical Indian Ocean in May with summer rainfall in Xinjiang[J].Plateau Meteorology40(1): 1-14.DOI: 10.7522/j.issn.1000-0534.2020.00003 .
null
魏建宁, 张杰, 2021.亚非副热带西风急流入口区位置及动能异常对中国华北盛夏年代际干旱的影响[J].高原气象40(2): 281-291.DOI: 10.7522/j.issn.1000-0534.2020.00043.Wei J N
null
Zhang J2021.Influence of the position and kinetic energy anomalies of the Inlet Region of the Asian-African Subtropical Westerly Jet on the mid-summer interdecadal drought in North China[J].Plateau Meteorology40(2): 281-291.DOI: 10.7522/j.issn.1000-0534.2020.00043 .
null
宣守丽, 张庆云, 孙淑清, 2011.夏季东亚高空急流月际变化与淮河流域降水异常的关系[J].气候与环境研究16(2): 231-242.
null
Xuan S L Zhang Q Y Sun S Q2011.Relationship between the monthly variation of the East Asia westerly jet and the Huaihe River valley rainfall anomaly in summer[J].Climatic and Environmental Research16(2): 231-242.
null
叶笃正, 陶诗言, 李麦村, 1958.在六月和十月大气环流的突变现象[J].气象学报29(4): 249-263.
null
Ye D Z Tao S Y Li M C1958.The abrupt change of circulation over northern hemisphere during June and October[J].Acta Meteorologica Sinica29(4): 249-263.
null
张耀存, 况雪源, 2008.东亚副热带西风急流位置变化与亚洲夏季风爆发的关系[J].暴雨灾害27(2): 97-103.
null
Zhang Y C Kuang X Y2008.The relationship between the location change of the East Asian subtropical westerly jet and Asian summer monsoon onset[J].Torrential Rain and Disasters27(2): 97-103.
Outlines

/