An EOF-Based Study of Precipitation Characteristics and Their Responses to Different Configurations of Summer Monsoon in the East Asian Monsoon Region from 1951 to 2020
Received date: 2023-09-21
Revised date: 2023-12-07
Online published: 2023-12-07
Summer precipitation in the East Asian monsoon region is significantly affected by monsoon variations.Different monsoon configurations form distinct precipitation patterns in the East Asian monsoon region by affecting regional water vapor transport.Further, the phase changes in precipitation patterns are prone to the occurrence of abnormal precipitation events, which in turn induce droughts and floods.Based on the EOF analysis, the GPCC precipitation, NCEP/NCAR reanalysis data and different monsoon indices were used to study the spatial and temporal distribution of summer precipitation in the East Asian monsoon region.The effects of four different configurations of summer monsoon on summer precipitation patterns in the East Asian monsoon region were further investigated by combining correlation analysis and water vapor flux analysis.The results show that: (1) Precipitation in the East Asian monsoon region experienced a decrease followed by an increase from 1951 to 2020.The increase in precipitation anomalies after 2010, as well as the rapid fluctuations in precipitation series, indicate a decline in regional climate stability.The EOF successfully presents the distribution of summer precipitation over the East Asian monsoon region.It mainly exhibits as the three-pole structure of north-south "-, +, -", followed by the dipolar-type structure with north-south reversed-phase variations.Precipitation anomalies occur in the phase transition of precipitation structure, mainly tripolar type followed by dipole type.(2) The combined influence of the East Asian, South Asian, West Pacific, and westerly circulation monsoon systems results in the summer precipitation anomaly in the East Asian monsoon region.The monsoon configurations leading to anomalous increase and decrease in precipitation are Configuration 1 (WNPMI strong, EASMI and AZCI weak) and Configuration 2 (AZCI strong, EASMI and SASMI weak) respectively.(3) At Configuration 1, the subtropical high is located in the southwest, the westerly trough appears at 40°N, and the southern monsoon is strong.These combine to form precipitation in the central part of the monsoon region through shear lines as well as uplift, leading to an increase in anomalous precipitation.In Configuration 2, the westerlies are strong and the southern water vapor dynamics are too weak to penetrate deep into the continent, resulting in an anomalous decrease in precipitation.The results of this study provide a theoretical framework for investigating the mechanisms behind precipitation anomalies in the East Asian monsoon region in the context of climate change.They also provide critical scientific references for managing the region's extreme precipitation occurrences, as well as preventing and controlling floods and droughts.
Zhanghuai MA , Yibo WANG , Zeyong GAO . An EOF-Based Study of Precipitation Characteristics and Their Responses to Different Configurations of Summer Monsoon in the East Asian Monsoon Region from 1951 to 2020[J]. Plateau Meteorology, 2024 , 43(4) : 855 -867 . DOI: 10.7522/j.issn.1000-0534.2023.00098
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 曹博文, 严蜜, 刘征宇, 等, 2023.过去千年东亚季风环流与内部变率对中国东部年代际降水分型的影响研究[J].第四纪研究, 43(4): 1076-1088.DOI: 10.11928/j.issn.1001-7410.2023.04.15.Cao B , |
null | |
null | 陈海山, 陈健康, 2017.东亚夏季风指数的分类及物理特征分析[J].大气科学学报, 40(3): 299-309.DOI: 10.13878/j.cnki.dqkxxb.20160323001.Chen H S , |
null | |
null | 陈金明, 陆桂华, 吴志勇, 等, 2016.1960-2009年中国夏季极端降水事件与气温的变化及其环流特征[J].高原气象, 35(3): 675-684.DOI: 10.7522/j.issn.1000-0534.2015.00072.Chen J M , |
null | |
null | 陈子凡, 王磊, 李谢辉, 等, 2022.西南地区极端降水时空变化特征及其与强ENSO事件的关系[J].高原气象, 41(3): 604-616.DOI: 10.7522/j.issn.1000-0534.2022.00004.Chen Z F , |
null | |
null | 丁一汇, 孙颖, 刘芸芸, 等, 2013.亚洲夏季风的年际和年代际变化及其未来预测[J].大气科学, 37(2): 253-280.DOI: 10.3878/j.issn.1006-9895.2012.12302.Ding Y H , |
null | |
null | 杜梦莹, 李艳, 冯娟, 2022.亚洲季风区内北半球秋季哈德莱环流特征及其与热带海温之间关系[J].高原气象, 41(6): 1399-1409.DOI: 10.7522/j.issn.1000-0534.2021.00093.Du M Y , |
null | |
null | 顾元华, 郭品文, 胡景高, 等, 2023.南亚和东亚热带夏季风强弱不同配置及其对中国夏季降水的影响[J].气象科学, 43(1): 15-24.DOI: 10.12306/2022jms.0058.Gu Y H , |
null | |
null | 何静, 范广洲, 张永莉, 等, 2021.气候变化背景下陆地季风与非季风区极端降水特征对比[J].高原气象, 40(2): 324-332.DOI: 10.7522/j.issn.1000-0534.2020.00077.He J , |
null | |
null | 桓玉, 李跃清, 2018.夏季东亚季风和南亚季风协同作用与我国南方夏季降水异常的关系[J].高原气象, 37(6): 1563-1577.DOI: 10.7522/j.issn.1000-0534.2018.00044.Huan Y , |
null | |
null | 黄荣辉, 陈际龙, 刘永, 2011.我国东部夏季降水异常主模态的年代际变化及其与东亚水汽输送的关系[J].大气科学, 35(4): 589-606. |
null | |
null | 靳莉君, 赵平, 2012.夏季南海季风对长江中下游季风降水影响的观测分析和数值模拟[J].气象学报, 70(4): 670-680. |
null | |
null | 李建平, 曾庆存, 2005.一个新的季风指数及其年际变化和与雨量的关系[J].气候与环境研究, 10(3): 351-365. |
null | |
null | 任菊章, 琚建华, 米瑞芝, 等, 2021.亚洲热带夏季风指数与中国南方降水的关系[J].气象科学, 41(2): 228-236.DOI: 10.12306/2020jms.0017.Ren J Z , |
null | |
null | 汪卫平, 杨修群, 2008.索马里急流变异及其与东亚夏季风和中国降水异常的关系[J].气象科学, 28(2): 139-146. |
null | |
null | 谢傲, 罗伯良, 2023.东亚夏季风指数分类与长江中游地区夏季降水的关系[J].中低纬山地气象, 47(1): 25-30. |
null | |
null | 晏红明, 王灵, 金燕, 等, 2023.云南冬季气温变化的主要模态及其影响的关键环流因子[J].高原气象, 42(2): 386-402.DOI: 10.7522/j.issn.1000-0534.2021.00070.Yan H M , |
null | |
null | 杨涵洧, 龚志强, 王晓娟, 等, 2021.中国东部夏季极端降水年代际变化特征及成因分析[J].大气科学, 45(3): 683-696.DOI: 10.3878/j.issn.1006-9895.2007.19247.Yang H W , |
null |
/
〈 |
|
〉 |