Independent Quality Control of High Spatiotemporal Resolution Surface Temperature Observations from Automatic Stations

  • Yiyi SHANG ,
  • Bing ZHANG ,
  • Zhengkun QIN ,
  • Xin LI
Expand
  • 1. School of Atmospheric Sciences,Nanjing University of Information Science & Technology,Nanjing 210044,Jiangsu,China
    2. Joint Center of Data Assimilation for Research and Application,Nanjing University of Information Science & Technology,Nanjing 210044,Jiangsu,China
    3. Nanjing Joint Institute for Atmospheric Sciences / Key Laboratory of Transportation Meteorology of China Meteorological Administration,Nanjing 210041,Jiangsu,China

Received date: 2023-08-10

  Revised date: 2023-12-26

  Online published: 2023-12-26

Abstract

The construction of automatic meteorological observation stations in China has been continuously improved.Currently, more than 60, 000 automatic meteorological observation stations have been built, providing abundant information of surface meteorological variables for weather and climate research.However, the practical application of ground automatic station data has always been constrained by high uncertainty in the quality of observation data.Strict quality control is a prerequisite for the effective application of automatic station data, but the high spatiotemporal resolution characteristics of automatic station observations bring more difficulties to quality control researches.How to accurately distinguish local small-scale weather information and local variation caused by erroneous data in high-resolution automatic station data has always been a difficult point in the research of quality control methods for spatiotemporal resolution automatic station data.On the basis of analyzing the spatial correlation scale and error characteristics of surface temperature, this study established a quality control method for temperatures from surface automatic station based on EOF (Empirical Orthogonal Function) analysis method, which only relies on observation data.The study conducted quality control experiments using surface automatic station temperature observations from January to May 2022, and compared the differences in surface temperature between the automatic station observation data and the Chinese reanalysis data CRA40 (CMA's global atmospheric Re-Analysis) before and after quality control.The results indicate that the established autonomous quality control method for observation data can effectively identify erroneous observation data, relying solely on the observation data itself, effectively avoiding the impact of background errors on quality control effectiveness.The quality control sub regions determined on the basis of correlation scale analysis further enhance the quality control method's ability to identify small-scale temperature changes in observation data, effectively preserving the reject of temperature extremum data corresponding to extreme events in small areas, the number of quality control modes determined by actual data characteristics can well separate the principal and residual terms of the observed data, significantly improving the accuracy of erroneous extreme value recognition.Further introducing sliding detection methods and overlap rejection standards can also retain as much valuable observation data as possible in areas with steep terrain.The quality control results of 1 month data show that the new quality control method can obviously and stably improve the spatial correlation coefficient between the surface temperature of automatic station data and the corresponding variable of CRA40 (CMA's global atmospheric Reanalysis) reanalysis data, and the average deviation is also reduced.Although the average data rejection rate is only about 8%, the spatial correlation coefficient can reach a maximum increase of about 0.02, which fully proves that proposed quality control method can effectively eliminate erroneous data and improve the spatial continuity of automatic station data.

Cite this article

Yiyi SHANG , Bing ZHANG , Zhengkun QIN , Xin LI . Independent Quality Control of High Spatiotemporal Resolution Surface Temperature Observations from Automatic Stations[J]. Plateau Meteorology, 2024 , 43(4) : 967 -981 . DOI: 10.7522/j.issn.1000-0534.2023.00105

References

null
Barnes S L1964.A technique for maximizing details in numerical weather map analysis[J].Journal of Applied Meteorology3(4): 396-409.DOI: 10.1175/1520-0450(1964)003<0396: ATFMDI>2.0.CO; 2 .
null
Dodson R Marks D1997.Daily air temperature interpolated at high spatial resolution over a large mountainous region[J].Climatic Research8(1): 1-20.DOI: 10.3354/cr008001 .
null
Guo Y R Shin D H Lee J H, et al, 2002.Application of the MM5 3DVAR system for a heavy rain case over the Korean Peninsula[C]//Papers Presented at the Twelfth PSU/NCAR Mesoscale Model Users’ Workshop NCAR, June 24-25, 2002.
null
Hubbard K G You J S2005.Sensitivite analysis of quality assurancc using the spatial regression approach: a case study of the maximum/minimum ais temperature[J].Journal of Atmospheric and Oceanic Technology22(10): 1520-1530.DOI: 10.1080/14786440109462720 .
null
Meek D W Hatfield J L1994.Data quality checking for single station meteorological databases[J].Agricultural and Forest Meteorology69(1/2): 85-109.DOI: 10.1016/0168-1923(94)90083-3 .
null
Pearson K1901.On lines and planes of closest fit to systems of points in space[J].The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science2(11): 559-572.DOI: 10.1080/14786440109462720 .
null
Qin Z K Zou X Li G, et al, 2010.Quality control of surface station temperature data with non-Gaussian observation-minus-background distributions[J].Journal of Geophysical Research115(D16): D16312.DOI: 10.1029/2009JD013695 .
null
Ruggiero F H Sashegyi K D Madala R V, et al, 1996.The use of surface observations in four-dimensional data assimilation using a mesoscale model[J].Monthly Weather Review124(5): 1018-1033.DOI: https: //doi.org/10.1175/1520-0493(1996)124<1018: TUOSOI>2.0.CO; 2 .
null
Xu Z F Wang Y Fan G Z2013.A two-stage quality control method for 2-m temperature observations using Biweight means and a progressive EOF analysis[J].Monthly Weather Review141(2): 798-808.DOI: 10.1175/MWR-D-11-00308.1 .
null
冯良敏, 2012.自动站资料质量控制及其三维变分同化研究[D].南京: 南京信息工程大学.Feng L M, 2012.Study on surface automatic weather station data quality control and its three-dimension variational assimilation[D].Nanjing: Nanjing University of Information Science & Technology.
null
傅娜, 陈葆德, 谭燕, 等, 2014.上海自动站气温资料的空间质量控制与特征分析[J].大气科学学报37(2): 199-207.DOI: 10.3969/j.issn.1674-7097.2014.02.008.Fu N
null
Chen B D Tan Y, et al, 2014.Spatial quality control and characteristic analysis of AWS temperature data in Shanghai[J].Transactions of Atmospheric Sciences37(2): 199-207.DOI: 10.3969/j.issn.1674-7097.2014.02.008 .
null
任芝花, 张志富, 孙超, 等, 2015.全国自动气象站实时观测资料三级质量控制系统研制[J].气象41(10): 1268-1277.DOI: 10.7519/j.issn.1000-0526.2015.10.010.Ren Z H
null
Zhang Z F Sun C, et al, 2015.Development of three-step quality control system of real time observation data from AWS in China[J].Meteorological Monthly41(10): 1268-1277.DOI: 10.7519/j.issn.1000-0526.2015.10.010 .
null
邵宇行, 秦正坤, 李昕, 2022.基于EOF的高时空分辨率自动站温度观测资料质量控制[J].大气科学学报45(4): 603-615.DOI: 10.13878/j.cnki.dqkxxb.202020506001.Shao Y H
null
Qin Z K Li X2022.Quality control based on EOF for surface temperature observations from high temporal-spatial resolution automatic weather stations[J], Transactions of Atmospheric Sciences45(4): 603-615.DOI: 10.13878/j.cnki.dqkxxb.2020056001 .
null
陶士伟, 徐枝芳, 2007.加密自动站资料质量保障体系分析[J].气象386(2): 34-41.DOI: 10.3969/j.issn.1000-0526.2007.02.006.Tao S W
null
Xu Z F2007.Analysis of the quality assurance procedures in intensified automatic surface weather observation system[J].Meteorological Monthly386(2): 34-41.DOI: 10.3969/j.issn.1000-0526.2007.02.006 .
null
王彩霞, 黄安宁, 郑鹏, 等, 2022.中国第一代全球陆面再分析(CRA40/Land)气温和降水产品在中国大陆的适用性评估[J].高原气象41(5): 1325-1334.DOI: 10.7522/j.issn.1000-0534. 2021.00056.Wang C X
null
Huang A N Zheng P, et al, 2022.Applicability evaluation of China’s first generation of global land surface reanalysis(cra40/land)air temperature and precipitation products in China Mainland[J].Plateau Meteorology41(5): 1325-1334.DOI: 10.7522/j.issn.1000-0534.2021.00056 .
null
王丹, 王金成, 田伟红, 2022.面向数值同化应用的L波段秒级探空资料的质量控制方法研究[J].高原气象41(6): 1615-1629.DOI: 10.7522/j.issn.1000-0534.2021.00085.Wang D
null
Wang J C Tian W H2022.Research on a quality control method for l band second-level radiosonde toward assimilation applications[J].Plateau Meteorology41(6): 1615-1629.DOI: 10.7522/j.issn.1000-0534.2021.00085 .
null
王海军, 刘莹, 2012.综合一致性质量控制方法及其在气温中的应用[J].应用气象学报23(1): 69-76.DOI: 10.11898/1001-7313.20120108.Wang H J
null
Liu Y2012.Comprehensive consistency method of data quality controlling with its application to daily temperature[J].Journal of Applied Meteorological Science23(1): 69-76.DOI: 10.11898/1001-7313.20120108 .
null
王轶, 徐枝芳, 范广洲, 2013.基于EOF 2m温度质量控制方法研究[J].高原气象32(2): 2564-2574.DOI: 10.7522/j.issn.1000-0534.2012.00054.Wang Y
null
Xu Z F Fan G Z2013.Study of EOF quality control method of 2m temperature[J].Plateau Meteorology32(2): 2564-2574.DOI: 10.7522/j.issn.1000-0534.2012.00054 .
null
熊安元, 2003.北欧气象观测资料的质量控制[J].气象科技31(5): 314-320.DOI: 10.3969/j.issn.1671-6345.2003.05.013.Xiong A Y , 2003.Quality control of meteorological observational data in Nordic countries[J].Meteorological Science and Technology, 31(5): 314-320.DOI: 10.3969/j.issn.1671-6345.2003. 05.013 .
null
徐枝芳, 龚建东, 王建捷, 等, 2007.复杂地形下地面观测资料同化II.模式地形与观测站地形高度差异代表性误差[J].大气科学(3): 449-458.DOI: 10.3878/j.issn.1006-9895.2007.03.08.Xu Z F
null
Gong J D Wang J J, et al, 2007.A study of assimilation of surface observational data in complex terrain part ii: representative error of the elevation difference between model surface and observation site[J].Chinese Journal of Atmospheric Sciences(3): 449-458.DOI: 10.3878/j.issn.1006-9895.2007.03.08 .
null
叶小岭, 周建华, 熊雄, 2014.一种基于GEP的地面气温观测资料的质量控制方法[J].热带气象学报30(6): 1196-1200.DOI: 10.3969/j.issn.1004-4965.2014.06.021.Ye X L
null
Zhou J H Xiong X2014.A gep-based method for quality control of surface temperature observations[J].Journal of Tropical Meteorology30(6): 1196-1200.DOI: 10.3969/j.issn.1004-4965.2014.06.021 .
null
尹嫦姣, 江志红, 吴息, 等, 2010.空间差值检验方法在地面气象资料质量控制中的应用[J].气候与环境研究15(3): 229-236.DOI: 10.3878/j.issn.1006-9585.2010.03.02.Yin C J
null
Jiang Z H Wu X, et al, 2010.A research on the application of spatial difference method in quality control of surface meteorological data[J].Clamitic and Environmental Research15(3): 229-236.DOI: 10.3878/j.issn.1006-9585.2010.03.02 .
null
张齐东, 熊雄, 2017.空间回归检验方法在地面气象资料质量控制中的应用——以逐时气温资料为例[J].内燃机与配件(10): 152-153.DOI: 10.19475/j.cnki.issn1674-957x.2017.10.082.Zhang Q D , Xiong X, 2017.A research on the application of spatial regression test in quality control of surface meteorological data: a case study of the hourly temperature[J].Internal Combustion Engine & Parts(10): 152-153.DOI: 10.19475/j.cnki.issn1674-957x.2017.10.082 .
null
张鑫宇, 范水勇, 张舒婷, 等, 2023.加密自动站数据在睿图-中亚数值模式中的应用[J].高原气象42(2): 459-471.DOI: 10.7522/j.issn.1000-0534.2021.00083.Zhang X Y
null
Fan S Y Zhang S T, et al, 2023.Application of encrypted automatic weather station data in RMAPS-CA numerical model[J].Plateau Meteorology42(2): 459-471.DOI: 10.7522/j.issn.1000-0534.2021.00083 .
null
张颖超, 姚润进, 熊雄, 等, 2017.PSO-PSR-ELM集成学习算法在地面气温观测资料质量控制中的应用[J].气候与环境研究22(1): 59-70.DOI: 10.3878/j.issn.1006-9585.2016.16013.Zhang Y C
null
Yao R J Xiong X, et al, 2017.Application of PSO-PSR-ELM-based ensemble learning algorithm in quality control of surface temperature observations[J].Climatic and Environmental Research22(1): 59-70.DOI: 10.3878/j.issn.1006-9585.2016.16013 .
null
赵虹, 冯呈呈, 刘寅, 2015a.Rec-EOF质量控制方法在地面观测2 m比湿中的应用[J].气象科学35(5): 638-645.DOI: 10.3969/2014jms.0045.Zhao H , FengC C, LiuY, 2015a.Application of recursive EOF quality control to 2 m specific humidity from ground?based observations[J].Journal of the Meteorological Sciences, 35(5): 638-645.DOI: 10.3969/2014jms.0045 .
null
赵虹, 秦正坤, 王金成, 等 , 2015b.经验正交函数分解质量控制法在地面观测资料变分同化中的个例研究与应用[J].气象学报73(4): 749-765.DOI: 10.11676/qxxb2015.053.Zhao H , QinZ K, WangJ C, et al, 2015b.Case studies and applications of the Empirical Orthogonal Function quality control in variational data assimilation systems for surface observation data[J].Acta Meteorologica Sinica, 73(4): 749-765.DOI: 10. 11676/qxxb2015.053 .
null
周青, 张乐坚, 李峰, 等, 2015.自动站实时数据质量分析及质控算法改进[J].气象科技43(5): 814-822.DOI: 10.3969/j.issn.1671-6345.2015.05.007.Zhou Q
null
Zhang L J Li F, et al, 2015.Quality analysis of real-time aws data and algorithm improvement of quality control[J].Meteorological Science and Technology43(5): 814-822.DOI: 10.3969/j.issn.1671-6345.2015.05.007 .
null
邹晓蕾, 2009.资料同化理论和应用(上册)[M].北京: 气象出版社.Zou X L, 2009.Theory and application of data assimilation (volume 1)[M].Beijing: China Meteorological Press.
Outlines

/