Independent Quality Control of High Spatiotemporal Resolution Surface Temperature Observations from Automatic Stations
Received date: 2023-08-10
Revised date: 2023-12-26
Online published: 2023-12-26
The construction of automatic meteorological observation stations in China has been continuously improved.Currently, more than 60, 000 automatic meteorological observation stations have been built, providing abundant information of surface meteorological variables for weather and climate research.However, the practical application of ground automatic station data has always been constrained by high uncertainty in the quality of observation data.Strict quality control is a prerequisite for the effective application of automatic station data, but the high spatiotemporal resolution characteristics of automatic station observations bring more difficulties to quality control researches.How to accurately distinguish local small-scale weather information and local variation caused by erroneous data in high-resolution automatic station data has always been a difficult point in the research of quality control methods for spatiotemporal resolution automatic station data.On the basis of analyzing the spatial correlation scale and error characteristics of surface temperature, this study established a quality control method for temperatures from surface automatic station based on EOF (Empirical Orthogonal Function) analysis method, which only relies on observation data.The study conducted quality control experiments using surface automatic station temperature observations from January to May 2022, and compared the differences in surface temperature between the automatic station observation data and the Chinese reanalysis data CRA40 (CMA's global atmospheric Re-Analysis) before and after quality control.The results indicate that the established autonomous quality control method for observation data can effectively identify erroneous observation data, relying solely on the observation data itself, effectively avoiding the impact of background errors on quality control effectiveness.The quality control sub regions determined on the basis of correlation scale analysis further enhance the quality control method's ability to identify small-scale temperature changes in observation data, effectively preserving the reject of temperature extremum data corresponding to extreme events in small areas, the number of quality control modes determined by actual data characteristics can well separate the principal and residual terms of the observed data, significantly improving the accuracy of erroneous extreme value recognition.Further introducing sliding detection methods and overlap rejection standards can also retain as much valuable observation data as possible in areas with steep terrain.The quality control results of 1 month data show that the new quality control method can obviously and stably improve the spatial correlation coefficient between the surface temperature of automatic station data and the corresponding variable of CRA40 (CMA's global atmospheric Reanalysis) reanalysis data, and the average deviation is also reduced.Although the average data rejection rate is only about 8%, the spatial correlation coefficient can reach a maximum increase of about 0.02, which fully proves that proposed quality control method can effectively eliminate erroneous data and improve the spatial continuity of automatic station data.
Yiyi SHANG , Bing ZHANG , Zhengkun QIN , Xin LI . Independent Quality Control of High Spatiotemporal Resolution Surface Temperature Observations from Automatic Stations[J]. Plateau Meteorology, 2024 , 43(4) : 967 -981 . DOI: 10.7522/j.issn.1000-0534.2023.00105
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 冯良敏, 2012.自动站资料质量控制及其三维变分同化研究[D].南京: 南京信息工程大学.Feng L M, 2012.Study on surface automatic weather station data quality control and its three-dimension variational assimilation[D].Nanjing: Nanjing University of Information Science & Technology. |
null | 傅娜, 陈葆德, 谭燕, 等, 2014.上海自动站气温资料的空间质量控制与特征分析[J].大气科学学报, 37(2): 199-207.DOI: 10.3969/j.issn.1674-7097.2014.02.008.Fu N , |
null | |
null | 任芝花, 张志富, 孙超, 等, 2015.全国自动气象站实时观测资料三级质量控制系统研制[J].气象, 41(10): 1268-1277.DOI: 10.7519/j.issn.1000-0526.2015.10.010.Ren Z H , |
null | |
null | 邵宇行, 秦正坤, 李昕, 2022.基于EOF的高时空分辨率自动站温度观测资料质量控制[J].大气科学学报, 45(4): 603-615.DOI: 10.13878/j.cnki.dqkxxb.202020506001.Shao Y H , |
null | |
null | 陶士伟, 徐枝芳, 2007.加密自动站资料质量保障体系分析[J].气象, 386(2): 34-41.DOI: 10.3969/j.issn.1000-0526.2007.02.006.Tao S W , |
null | |
null | 王彩霞, 黄安宁, 郑鹏, 等, 2022.中国第一代全球陆面再分析(CRA40/Land)气温和降水产品在中国大陆的适用性评估[J].高原气象, 41(5): 1325-1334.DOI: 10.7522/j.issn.1000-0534. 2021.00056.Wang C X , |
null | |
null | 王丹, 王金成, 田伟红, 2022.面向数值同化应用的L波段秒级探空资料的质量控制方法研究[J].高原气象, 41(6): 1615-1629.DOI: 10.7522/j.issn.1000-0534.2021.00085.Wang D , |
null | |
null | 王海军, 刘莹, 2012.综合一致性质量控制方法及其在气温中的应用[J].应用气象学报, 23(1): 69-76.DOI: 10.11898/1001-7313.20120108.Wang H J , |
null | |
null | 王轶, 徐枝芳, 范广洲, 2013.基于EOF 2m温度质量控制方法研究[J].高原气象, 32(2): 2564-2574.DOI: 10.7522/j.issn.1000-0534.2012.00054.Wang Y , |
null | |
null | 熊安元, 2003.北欧气象观测资料的质量控制[J].气象科技, 31(5): 314-320.DOI: 10.3969/j.issn.1671-6345.2003.05.013.Xiong A Y , 2003.Quality control of meteorological observational data in Nordic countries[J].Meteorological Science and Technology, 31(5): 314-320.DOI: 10.3969/j.issn.1671-6345.2003. 05.013 . |
null | 徐枝芳, 龚建东, 王建捷, 等, 2007.复杂地形下地面观测资料同化II.模式地形与观测站地形高度差异代表性误差[J].大气科学(3): 449-458.DOI: 10.3878/j.issn.1006-9895.2007.03.08.Xu Z F , |
null | |
null | 叶小岭, 周建华, 熊雄, 2014.一种基于GEP的地面气温观测资料的质量控制方法[J].热带气象学报, 30(6): 1196-1200.DOI: 10.3969/j.issn.1004-4965.2014.06.021.Ye X L , |
null | |
null | 尹嫦姣, 江志红, 吴息, 等, 2010.空间差值检验方法在地面气象资料质量控制中的应用[J].气候与环境研究, 15(3): 229-236.DOI: 10.3878/j.issn.1006-9585.2010.03.02.Yin C J , |
null | |
null | 张齐东, 熊雄, 2017.空间回归检验方法在地面气象资料质量控制中的应用——以逐时气温资料为例[J].内燃机与配件(10): 152-153.DOI: 10.19475/j.cnki.issn1674-957x.2017.10.082.Zhang Q D , Xiong X, 2017.A research on the application of spatial regression test in quality control of surface meteorological data: a case study of the hourly temperature[J].Internal Combustion Engine & Parts(10): 152-153.DOI: 10.19475/j.cnki.issn1674-957x.2017.10.082 . |
null | 张鑫宇, 范水勇, 张舒婷, 等, 2023.加密自动站数据在睿图-中亚数值模式中的应用[J].高原气象, 42(2): 459-471.DOI: 10.7522/j.issn.1000-0534.2021.00083.Zhang X Y , |
null | |
null | 张颖超, 姚润进, 熊雄, 等, 2017.PSO-PSR-ELM集成学习算法在地面气温观测资料质量控制中的应用[J].气候与环境研究, 22(1): 59-70.DOI: 10.3878/j.issn.1006-9585.2016.16013.Zhang Y C , |
null | |
null | 赵虹, 冯呈呈, 刘寅, 2015a.Rec-EOF质量控制方法在地面观测2 m比湿中的应用[J].气象科学, 35(5): 638-645.DOI: 10.3969/2014jms.0045.Zhao H , FengC C, LiuY, 2015a.Application of recursive EOF quality control to 2 m specific humidity from ground?based observations[J].Journal of the Meteorological Sciences, 35(5): 638-645.DOI: 10.3969/2014jms.0045 . |
null | 赵虹, 秦正坤, 王金成, 等 |
null | 周青, 张乐坚, 李峰, 等, 2015.自动站实时数据质量分析及质控算法改进[J].气象科技, 43(5): 814-822.DOI: 10.3969/j.issn.1671-6345.2015.05.007.Zhou Q , |
null | |
null | 邹晓蕾, 2009.资料同化理论和应用(上册)[M].北京: 气象出版社.Zou X L, 2009.Theory and application of data assimilation (volume 1)[M].Beijing: China Meteorological Press. |
/
〈 |
|
〉 |