Evaluation of Prediction Ability of the CMA-CPSv3 Model for the South Asian High and the West Pacific Subtropical High in Summer
Received date: 2023-09-26
Revised date: 2024-01-22
Online published: 2024-01-22
In order to evaluate the predictive simulation ability of the CMA-CPSv3 climate prediction model (hereafter CMA-CPSv3 model) on two high-pressure systems, the South Asian High and the Western Pacific Subtropical High, that affect summer precipitation in China, the return simulated data by the CMA-CPSv3 model starting in March and May from 2001 to 2020 and ERA5 reanalysis data were used to firstly evaluate the model’s predictive ability on the characteristic indices of the two high-pressure systems, and then analyze the predictive ability of the differences in predicting the summer circulation system and water vapor characteristics between two high-pressure systems in the same good year and the same bad year, as well as their impact on summer precipitation in China, were compared.The possible reasons for the stronger prediction of the two high-pressure systems were explored.The main conclusions were as follows: (1) The CMA-CPSv3 model has the best prediction effect on the average ridge position of the West Pacific subtropical high and the South Asian high, with the predicted results of the intensity index and area index being significantly stronger or larger; Compared with the forecast starting in March, the forecast results starting in May have a certain improvement in the prediction of the West Pacific subtropical high.(2) The CMA-CPSv3 model has well predicted the circulation situation at 100 hPa and 500 hPa, with good predictions for temperature and wind fields.However, the predicted range of the South Asian High and the West Pacific Subtropical High is generally stronger.(3) The predicted positions of the ridge line of the two high-pressure systems in the same good year and the same poor year are relatively good, and the predicted areas and intensities are significantly stronger.The prediction deviation for the same good year is relatively small.It can better predict the spatial distribution of water vapor flux in East Asia and the distribution pattern of summer precipitation in China.(4) The upward motion of the predicted two high pressure systems in the longitude region is weaker than the ERA5 result, which may be one of the reasons for the larger range and stronger intensity of the predicted South Asian High and West Pacific Subtropical High.
Mingsheng CHEN , Minhong SONG , Xiaoyun LIANG , Yufei PEI , Tongwen WU . Evaluation of Prediction Ability of the CMA-CPSv3 Model for the South Asian High and the West Pacific Subtropical High in Summer[J]. Plateau Meteorology, 2024 , 43(5) : 1138 -1151 . DOI: 10.7522/j.issn.1000-0534.2024.00009
null | |
null | |
null | |
null | 岑思弦, 陈文, 胡鹏, 等, 2021.南亚高压演变过程及其变异机制研究进展[J].高原气象, 40(6): 1304-1317.DOI: 10.7522/j.issn. 1000-0534.2021.zk014.Cen S X , |
null | |
null | |
null | |
null | 段春锋, 徐敏, 程智, 等, 2017.DERF2.0模式对月尺度西太平洋副热带高压预测能力评估[J].气象, 43(10): 1267-1277. |
null | DO 1 : 10.7519/j.issn.1000-0526.2017.10.011.Duan C F, Xu M, Cheng Z,et al, 2017.Evaluation on monthly prediction of western Pacific subtropical high by DERF2.0 Model[J].Meteorological Monthly, 43(10): 1267-1277.DO1: 10.7519/j.issn.1000-0526.2017.10.011. |
null | 董敏, 吴统文, 左群杰, 等, 2018.气候系统模式对南亚高压气候特征的模拟比较研究[J].高原气象, 37(2): 455-468.DOI: 10.7522/j.issn.1000-0534.2017.00051.Dong M , |
null | |
null | 冯琬, 范广洲, 朱丽华, 等, 2014.夏季南亚高压与西太平洋副热带高压的相关性分析[J].热带气象学报, 30(5): 963-970.DOI: 10.3969/j.issn.1004-4965.2014.05.016.Feng W , |
null | |
null | 高丽, 任鹏飞, 周放, 等, 2020.GRAPES-GEPS对西太平洋副热带高压和南亚高压的集合预报评估与集合方法研究[J].地球科学进展, 35(7): 715-730.DOI: 10.11867/j.issn.1001-8166.2020.060.Gao L R , |
null | |
null | 顾伯辉, 郑志海, 封国林, 等, 2017.季节预测模式对东亚夏季环流的预测能力及其对热带海洋的响应分析[J].大气科学, 41(1): 91-105.DOI: 10.3878/j.issn.1006-9895.1603.15154.Gu B H , |
null | |
null | 雷显辉, 宋敏红, 张少波, 2022.夏季南亚高压和西太副高活动特征指数与中国东部降水分布的联系[J].高原气象, 41(2): 489-501.DOI: 10.7522/j.issn.1000-0534.2021.00099.Lei X H , |
null | |
null | 刘芸芸, 李维京, 左金清, 等, 2014.CMIP5模式对西太平洋副热带高压的模拟和预估[J].气象学报, 72(2): 277-290.DOI: 10.11676/qxxb2014.025.Liu Y Y , |
null | |
null | 申红艳, 温婷婷, 赵仙荣, 等, 2023.基于多模式的青藏高原前冬降水预测性能评估[J].干旱区研究, 40(7): 1-14.DOI: 10.13866/j.azr.2023.07.01.Shen H T , |
null | |
null | 陶诗言, 卫捷, 2006.再论夏季西太平洋副热带高压的西伸北跳[J].应用气象学报, 17(5): 513-525. |
null | |
null | 吴捷, 任宏利, 张帅, 等, 2017.BCC二代气候系统模式的季节预测评估和可预报性分析[J].大气科学, 41(6): 1300-1315.DOI: 10.3878/j.issn.1006-9895.1703.16256.Wu J , |
null | |
null | 徐海明, 何金海, 周兵, 2001.江淮入梅前后大气环流的演变特征和西太平洋副高北跳西伸的可能机制[J].应用气象学报, 12 (2): 150-158. |
null | |
null | 张丹琦, 孙凤华, 张耀存, 2019.基于BCC第二代短期气候预测模式系统的中国夏季降水季节预测评估[J].高原气象, 38(6): 1229-1240.DOI: 10.7522/j.issn.1000-0534.2018.00149.Zhang D Q , |
null | |
null | 张宏芳, 陈海山, 2011a.21个气候模式对东亚夏季环流模拟的评估Ⅰ: 气候态[J].气象科学, 31(2): 119-128. |
null | 张宏芳, 陈海山, 2011b.21个气候模式对东亚夏季环流模拟的评估Ⅱ: 年际变化[J].气象科学, 31(3): 247-257. |
null | 张武龙, 张井勇, 范广洲, 2015.CMIP5模式对我国西南地区干湿季降水的模拟和预估[J].大气科学, 39(3): 559-570.DOI: 10.3878/j.issn.1006-9895.1408.14136.Zhang W L , |
null | |
null | 张潇潇, 薛峰, 董啸, 等, 2022.国家气候中心两个CMIP6模式模拟的东亚夏季风的季节内演变[J].气候与环境研究, 27(6): 729-746.DOI: 10.3878/j.issn.1006-9585.2021.21112.Zhang X X , |
null | |
null | 郑嘉雯, 蔡宏珂, 吴捷, 等, 2021.三个气候系统模式对500hPa高度场预报的检验对比分析[J].高原山地气象研究, 41(2): 115-124.DOI: 10.3969/j.issn.1674-2184.2021.02.014.Zheng J W , |
null | |
null | 郑庆林, 燕启民, 宋青丽, 1993.一次南亚高压中期活动过程的数值研究[J].热带气象学报, 9(1): 37-45. |
null | |
null | 周天军, 陈梓明, 邹立维, 等, 2020.中国地球气候系统模式的发展及其模拟和预估[J].气象学报, 78(3): 332-350.DOI: 10.11676/qxxb2020.029.Zhou T J , |
null | |
null | 周天军, 邹立维, 吴波, 等, 2014.中国地球气候系统模式研究进展: CMIP计划实施近20年回顾[J].气象学报, 72(5): 892-907.DOI: 10.11676/qxxb2014.083.Zhou T J , |
null | |
null | 朱玉祥, 江剑民, 赵亮, 等, 2021.不同计算形式的相关分析在气象中的应用综述[J].热带气象学报, 37(1): 1-13.DOI: 10.16032/j.issn.1004-4965.2021.001.Zhu Y X , |
null | |
null | 朱羿洁, 张飞民, 杨耀先, 等, 2023.夏季南亚高压位置与青藏高原降水年际变化的关系研究[J].高原气象, 42(1): 60-67.DOI: 10.7522/j.issn.1000-0534.2022.00020.Zhu Y J , |
null |
/
〈 |
|
〉 |