Statistical Analysis of Heavy Precipitation Events Caused by Extra-tropical Cyclones of Different Occlusion Types during the Cold Season

  • Xiaodan DU ,
  • Yu ZHAO
Expand
  • Key Laboratory of Meteorological Disaster,Ministry of Education/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/International Joint Laboratory on Climate and Environment Change,Nanjing University of Information Science & Technology,Nanjing 210044,Jiangsu,China

Received date: 2023-07-26

  Revised date: 2024-01-18

  Online published: 2024-01-18

Abstract

Based on the conventional observation, the cloud top blackbody brightness temperature data of Fengyun satellite, and the European Centre for Medium-Range Weather Forecasts 0.25°×0.25° ERA5 reanalysis data from 2006 to 2021, we have conducted a statistical analysis on the heavy precipitation events caused by extratropical cyclones over northern and northeastern China during the cold season.The results show that: (1) Most of the extratropical cyclones occluded during the explosive development phase, but the development process is different, with the Shapiro-Keyser (SK-type) and the classical Norwegian (NW-type) cyclones each accounting for half.The SK-type cyclone has a deep trough at 500 hPa, strong baroclinicity, and steering airflow in the north-northeast-orientation, resulting in westerly cyclone path, and northward, widespread precipitation; the NW-type cyclone has a shallow trough at 500 hPa, with weak cold advection behind the trough, and the steering airflow in the east-northeast orientation, resulting in an easterly cyclone path, more to the south and more intense precipitation.(2) The atmospheric rivers of the NW-type cyclone are more intensethan those of the SK-type cyclone, and the corresponding heavy precipitation is extensive and more intense.With the development of the cyclones, the atmospheric rivers of the SK-type cyclone gradually turn to a north-south orientation, and there is a clear backward-turning feature on the north side of the atmospheric river, resulting in a warm front precipitation center of the SK-type cyclone located in the northwest quadrant of the cyclone, and the warm front precipitation center of the NW-type cyclone is close to the center of the cyclones.(3) The warm front frontogenesis in the northwest quadrant of the SK-type cyclone is significantly more intense than that of the NW-type cyclone, and the intense lifting forced by the front is conducive to heavy snowfall.(4) The SK-type cyclone has an intense potential vorticity structure in the shape of treble-clef at 300 hPa, while the NW-type cyclone has weaker potential vorticity in the upper levels.The stratospheric potential vorticity over the SK-type cyclone extends downwards, connecting with the low-level potential vorticity to form a potential vorticity tower, with a deep warm occluded structure nearby; while, the upper-level potential vorticity of the NW-type cyclone does not extend downward significantly, and there is no potential vorticity tower generated.The SK-type cyclone first develops in the middle troposphere, and then reachesthe surface, while the NW-type cyclone develops from the lower troposphere.

Cite this article

Xiaodan DU , Yu ZHAO . Statistical Analysis of Heavy Precipitation Events Caused by Extra-tropical Cyclones of Different Occlusion Types during the Cold Season[J]. Plateau Meteorology, 2024 , 43(5) : 1190 -1206 . DOI: 10.7522/j.issn.1000-0534.2024.00006

References

null
Bjerknes J1919.On the structure of moving cyclones[J].Monthly Weather Review47(2): 95-99.DOI: 10.1175/1520-0493(1919)47<95: OTSOMC>2.0.CO; 2 .
null
Bosart L F1981.The Presidents' Day snowstorm of 18-19 February 1979: a subsynoptic-scale event[J].Monthly Weather Review109(7): 1542-1566.DOI: 10.1175/1520-0493(1981)109<1542: TPDSOF>2.0.CO; 2 .
null
Brennan M J Lackmann G M2005.The influence of incipient latent heat release on the precipitation distribution of the 24-25 January 2000 U.S.East Coast cyclone[J].Monthly Weather Review, 133: 1913-1937, DOI: 10.1175/MWR2959.1 .
null
Hoskins B J McIntyre M E Robertson A W1985.On the use and significance of isentropic potential vorticity maps[J].Quarterly Journal of the Royal Meteorological Society111(470): 877-946.DOI: 10.1002/qj.4971114-7002 .
null
Kuo Y H Reed R J Low-Nam S1992.Thermal structure and airflow in a model simulation of an occluded marine cyclone[J].Monthly Weather Review120(10): 2280-2297.DOI: 10.1175/1520-0493(1992)120<2280: TSA-AIA>2.0.CO; 2 .
null
Martin J E1998.The structure and evolution of a continental winter cyclone.Part I: frontal structure and the occlusion process[J].Monthly Weather Review126(2): 303-328.DOI: 10.1175/1520-0493(1998)126<0303: TS-AEOA>2.0.CO; 2 .
null
Pang H J Fu G2017.Case study of potential vorticity tower in three explosive cyclones over Eastern Asia[J].Journal of the Atmospheric Sciences74(5): 1445-1454.DOI: 10.1175/JAS-D-15-0330.1 .
null
Ralph F M Dettinger M D2011.Storms, floods, and the science of atmospheric rivers[J].Eos, Transactions American Geophysical Union92(32): 265-266.DOI: 10.1029/2011EO320001 .
null
Reader M C Moore G W K1995.Stratosphere‐troposphere interactions associated with a case of explosive cycloge-nesis in the Labrador Sea[J].Tellus A47(5): 849-863.DOI: 10.1034/j.1600-0870.1995.00124.x .
null
Reed R J Albright M D1986.A case study of explosive cyclogenesis in the eastern Pacific[J].Monthly Weather Review114(12): 2297-2319.DOI: 10.1175/1520-0493(1986)114<2297: ACSOEC>2.0.CO; 2 .
null
Rutz J J2014.Climatological characteristics of atmospheric rivers and their inland penetration over the Western United States[J].Monthly Weather Review142(2): 905-921.DOI: 10.1175/ MWR-D-13-00168.1 .
null
Sanders F Gyakum J R1980.Synoptic-dynamic climatology of the “bomb”[J].Monthly Weather Review108(10): 1589-1606.DOI: 10.1175/1520-0493(1980)108<1589: SDCOT>2.0.CO; 2 .
null
Sanders F1986.Frontogenesis and symmetric stability in a major New England snowstorm[J].Monthly Weather Review114(10): 1847-1862.DOI: 10.1175/1520-0493(1986)114<1847: FASSIA>2.0.CO; 2 .
null
Schultz D M Keyser D Bosart L F1998.The effect of large-scale flow on low-level frontal structure and evolution in midlatitude cyclones[J].Monthly Weather Review126(7): 1767-1791.DOI: 10.1175/1520-0493(1998)-126<1767: TEOLSF>2.0.CO; 2 .
null
Schultz D M Vaughan G2011.Occluded fronts and the occlusion process: A fresh look at conventional wisdom[J].Bulletin of the American Meteorological Society92(4): 443-466.DOI: 10. 1175/2010BAMS3057.1 .
null
Shapiro M A Keyser D1990.Fronts, jet streams and the tropopause[M].Massachusetts: American Meteorological Society.DOI: 10. 1007/978-1-944970-33-8_10 .
null
Uccellini L W Kocin P J Petersen R A, et al, 1984.The Presidents' Day cyclone of 18-19 February 1979: synoptic overview and analysis of the subtropical jet streak influencing the pre-cyclogenetic period[J].Monthly Weather Review112(1): 31-55.DOI: 10.1175/1520-0493(1984)112<0031: TPDCOF>2.0.CO; 2 .
null
Uccellini L W Keyser D Brill K F, et al, 1985.The Presidents' Day cyclone of 18-19 February 1979: influence of upstream trough amplification and associated tropopause folding on rapid cyclogenesis[J].Monthly Weather Review113(6): 962-988.DOI: 10.1175/1520-0493(1985)113<0962: TPDCOF>2.0.CO; 2 .
null
Utsumi N Kim H Seto S, et al, 2014.Climatological characteristics of fronts in the Western North Pacific based on surface weather charts[J].Journal of Geophysical Research: Atmospheres119(15): 9400-9418.DOI: 10.100-2/2014JD021734 .
null
Waliser D Guan B2017.Extreme winds and precipitation during landfall of atmospheric rivers[J].Nature Geo-science10(3): 179-183.DOI: 10.1038/ngeo2894 .
null
Wang C C Rogers J C2001.A composite study of explosive cyclogenesis in different sectors of the North Atlantic.Part I: Cyclone structure and evolution[J].Monthly Weather Review, 129: 1481-1499, DOI: 10.1175/1520-0493(2001)129, 1481: ACSOEC.2.0.CO; 2.
null
Xiong Y T Ren X J2020.Influences of atmospheric rivers on North Pacific winter precipitation: climatology and dependence on ENSO condition[J].Journal of Climate.34(1): 277-292.DOI: 10. 1175/JCLI-D-20-0301.1 .
null
Zhu Y Newell R E1994.Atmospheric rivers and bombs[J].Geophysical Research Letters21(18): 1999-2002.DOI: 10.1029/ 94GL01710 .
null
白云飞, 赵宇, 李树岭, 等, 2023.造成东北地区暴雪过程的温带气旋暖输送带特征研究[J].高原气象42(5): 1271-1284.DOI: 10.7522/j.issn.1000-0534.2022.00108.Bai Y F
null
Zhao Yu Li S L, et al, 2023.Characteristics of warm conveyor belts in extratropical cyclones causing snowstorms in northeastern China[J].Plateau Meteorology42(5): 1271-1284.DOI: 10.7522/j.issn.1000-0534.2022.00108 .
null
蔡丽娜, 隋迎玖, 刘大庆, 等, 2009.一次爆发性气旋引发的罕见暴风雪过程分析[J].北京大学学报(自然科学版)45(4): 693-700.DOI: 10.13209/j.0479-8023.2009.103.Cai L N
null
Sui Y J Liu D Q, et al, 2009.Analysis on an unusual snowstorm event caused by explosive cyclone[J].Acta Scientiarum Naturalium Universitatis Pekinensis45(4): 693-700.DOI: 10.13209/j.0479-8023.2009.103 .
null
何立富, 齐道日娜, 余文, 2022.引发东北极端暴雪的黄渤海气旋爆发性发展机制[J].应用气象学报33(4): 385-399.DOI: 10.11898/1001-7313.20220401.He L F
null
Chyi D Yu W2022.Development mechanisms of the Yellow sea and Bohai sea cyclone causing extreme snowstorm in northeast China[J].Journal of Applied Meteorological Science33(4): 385-399.DOI: 10.11898/1001-7313.20220401 .
null
黄彬, 代刊, 钱奇峰, 等, 2013.引发黄渤海大风的黄河气旋诊断研究[J].气象39(3): 302-312.DOI: 10.7519/j.issn.1000-0526. 2013.03.004.Huang B
null
Dai K Qian Q F, et al, 2013.Diagnosis of Yellow River cyclone induced strong winds over Yellow and Bohai Seas[J].Meteorological Monthly39(3): 302-312.DOI: 10.7519/j.issn.1000-0526.2013.03.004 .
null
黄彬, 钱传海, 聂高臻, 等, 2011.干侵入在黄河气旋爆发性发展中的作用[J].气象37(12): 1534-1543.
null
Huang B Qian C H Nie G Z, et al, 2011.Dry intrusion into the March 2007 strong storm surge over Bohai Sea[J].Meteorological Monthly37(12): 1534-1543.
null
黄子怡, 赵宇, 李树岭, 等, 2023.东北地区温带气旋暴雪过程的大气河特征[J].高原气象42(3): 734-747.DOI: 10.7522/j.issn.1000-0534.2022.00076.Huang Z Y
null
Zhao Y Li S L, et al, 2023.Characteristics of the Atmospheric Rivers in snowstorms caused by extratropical cyclones in northeastern China[J].Plateau Meteorology42(3): 734-747.DOI: 10.7522/j.issn.1000-0534.2022.00076 .
null
刘宁微, 齐琳琳, 韩江文, 2009.北上低涡引发辽宁历史罕见暴雪天气过程的分析[J].大气科学33(2): 275-284.DOI: 10.3878/j.issn.1006-9895.2009.02.07.Liu N W
null
Qi L L Han J W2009.The analyses of an unusual snowstorm caused by the northbound vortex over liaoning province in China[J].Chinese Journal of Atmospheric Sciences33(2): 275-284.DOI: 10.3878/j.issn.1006-9895.2009.02.07 .
null
孙欣, 蔡芗宁, 陈传雷, 等, 2011.“070304”东北特大暴雪的分析[J].气象37(7): 863-870.
null
Sun X Cai X N Chen C L, et al, 2011.Analysis of the 4 March 2007 heavy snowstorm in northeast China[J].Meteorological Monthly37(7): 863-870.
null
秦华锋, 金荣花, 2008. “ 0703”东北暴雪成因的数值模拟研究[J].气象, 34(4): 30-38.QinH F, JinR H, 2008.Numerical simulation study of the cause of snowstorm process in northeast of China on March 3-5 of 2007[J].Meteorological Monthly, 34(4): 30-38.
null
王达文, 1975.东亚大陆东岸的倒暖锋[J].气象1(10): 4-7.DOI: 10.7519/j.issn.1000-0526.1975.10.003.Wang D W , 1975.An inverted warm front on the east coast of the east Asian continent[J].Meteorological Monthly, 1(10): 4-7.DOI: 10. 7519/j.issn.1000-0526.1975.10.003 .
null
王洪庆, 张焱, 陶祖钰, 等, 2000.黄海气旋数值模拟的可视化[J].应用气象学报11(3): 282-286.
null
Wang H Q Zhang Y Tao Z Y, et al, 2000.Visualization of the numerical simulation of a Yellow sea cyclone[J].Journal of Applied Meteorological Science11(3): 282-286.
null
熊秋芬, 郭达烽, 牛宁, 等, 2016.温带气旋暖锋后弯云图特征及结构成因分析[J].暴雨灾害35(4): 297-305.DOI: 10.3969/j.issn.1004-9045.2016.04.001.Xiong Q F
null
Guo D F Niu N, et al, 2016.Cloud characteristics and analysis of structure and mechanism on back-bent warm front in extratropical cyclone over East Asian land[J].Torrential Rain and Disasters35(4): 297-305.DOI: 10.3969/j.issn.1004-9045.2016.04.001 .
null
熊秋芬, 牛宁, 章丽娜, 2013.陆地上爆发性温带气旋的暖锋后弯结构分析[J].气象学报71(2): 239-249.DOI: 10.11676/qxxb2013.030.Xiong Q F
null
Niu N Zhang L N2013.Analysis of the back-bent warm front structure associated with an explosive extratropical cyclone over land[J].Acta Meteorologica Sinica71(2): 239-249.DOI: 10.11676/qxxb2013.030 .
null
杨贵名, 毛冬艳, 姚秀萍, 2006.梅雨期一次黄淮气旋发展的干侵入特征分析[J].热带气象学报22(2): 176-183.
null
Yang G M Mao D Y Yao X P2006.The analysis of dry intrusion feature of a Huanghuai cyclone development in Meiyu period[J].Journal of Tropical Meteorology22(2): 176-183.
null
仪清菊, 丁一汇, 1992.东海地区温带气旋爆发性发展的动力学分析[J].气象学报50(2): 152-166.DOI: 10.1-1676/qxxb1992.018.Yi Q J
null
Ding Y H1992.A dynamic study of two explosively deepening cyclones over the East China Sea[J].Acta Meteorologica Sinica50(2): 152-166.DOI: 10.11676/qxxb1992.018 .
null
易笑园, 李泽椿, 陈涛, 等, 2009.2007年3月3
null
-5 日强雨雪过程中的干冷空气活动及其作用[J].南京气象学院学报32(2): 306-313. Yi X Y Li Z C Chen T, et al, 2009.Activities of cold-dry air and its impact on heavy rain-snow processes in north China during March 3-5, 2007[J].Transactions of Atmospheric Sciences, 32(2): 306-313.
null
张雅乐, 俞小鼎, 2021.黄河气旋暴雨过程发展演变成因分析[J].高原气象40(1): 74-84.DOI: 10.7522/j.issn.1000-0534.2019.00103.Zhang Y L
null
Yu X D2021.Analysis on the causes of development and evolution of the Yellow river cyclone rainstorm process[J].Plateau Meteorology40(1): 74-84.DOI: 10.7522/j.issn.1000-0534.2019.00103 .
null
赵宇, 朱皓清, 蓝欣, 等, 2018.基于CloudSat资料的北上江淮气旋暴雪云系结构特征[J].地球物理学报61(12): 4789-4804.DOI: 10.6038/cjg2018L0697.Zhao Y
null
Zhu H Q Lan X, et al, 2018.Structure of the snowstorm cloud associated with northward Jiang-huai cyclone based on Cloudsat satellite data[J].Chinese Journal of Geophysics61(12): 4789-4804.DOI: 10.6038/cjg2018L0697 .
null
周显伟, 赵宇, 祝玉梅, 等, 2018.黑龙江省两次温带气旋暴雪过程对比分析[J].冰川冻土40(6): 1195-1206.DOI: 10.7522/j.issn.1000-0240.2018.0417.Zhou X W
null
Zhao Y Zhu Y M, et al, 2018.Comparative analysis of two extra-tropical cyclone snowstorm processes in Heilongjiang Province[J].Journal of Glaciology and Geocryology40(6): 1195-1206.DOI: 10.7522/j.issn.1000-0240.2018.0417 .
Outlines

/