Statistical Analysis of Heavy Precipitation Events Caused by Extra-tropical Cyclones of Different Occlusion Types during the Cold Season
Received date: 2023-07-26
Revised date: 2024-01-18
Online published: 2024-01-18
Based on the conventional observation, the cloud top blackbody brightness temperature data of Fengyun satellite, and the European Centre for Medium-Range Weather Forecasts 0.25°×0.25° ERA5 reanalysis data from 2006 to 2021, we have conducted a statistical analysis on the heavy precipitation events caused by extratropical cyclones over northern and northeastern China during the cold season.The results show that: (1) Most of the extratropical cyclones occluded during the explosive development phase, but the development process is different, with the Shapiro-Keyser (SK-type) and the classical Norwegian (NW-type) cyclones each accounting for half.The SK-type cyclone has a deep trough at 500 hPa, strong baroclinicity, and steering airflow in the north-northeast-orientation, resulting in westerly cyclone path, and northward, widespread precipitation; the NW-type cyclone has a shallow trough at 500 hPa, with weak cold advection behind the trough, and the steering airflow in the east-northeast orientation, resulting in an easterly cyclone path, more to the south and more intense precipitation.(2) The atmospheric rivers of the NW-type cyclone are more intensethan those of the SK-type cyclone, and the corresponding heavy precipitation is extensive and more intense.With the development of the cyclones, the atmospheric rivers of the SK-type cyclone gradually turn to a north-south orientation, and there is a clear backward-turning feature on the north side of the atmospheric river, resulting in a warm front precipitation center of the SK-type cyclone located in the northwest quadrant of the cyclone, and the warm front precipitation center of the NW-type cyclone is close to the center of the cyclones.(3) The warm front frontogenesis in the northwest quadrant of the SK-type cyclone is significantly more intense than that of the NW-type cyclone, and the intense lifting forced by the front is conducive to heavy snowfall.(4) The SK-type cyclone has an intense potential vorticity structure in the shape of treble-clef at 300 hPa, while the NW-type cyclone has weaker potential vorticity in the upper levels.The stratospheric potential vorticity over the SK-type cyclone extends downwards, connecting with the low-level potential vorticity to form a potential vorticity tower, with a deep warm occluded structure nearby; while, the upper-level potential vorticity of the NW-type cyclone does not extend downward significantly, and there is no potential vorticity tower generated.The SK-type cyclone first develops in the middle troposphere, and then reachesthe surface, while the NW-type cyclone develops from the lower troposphere.
Xiaodan DU , Yu ZHAO . Statistical Analysis of Heavy Precipitation Events Caused by Extra-tropical Cyclones of Different Occlusion Types during the Cold Season[J]. Plateau Meteorology, 2024 , 43(5) : 1190 -1206 . DOI: 10.7522/j.issn.1000-0534.2024.00006
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 白云飞, 赵宇, 李树岭, 等, 2023.造成东北地区暴雪过程的温带气旋暖输送带特征研究[J].高原气象, 42(5): 1271-1284.DOI: 10.7522/j.issn.1000-0534.2022.00108.Bai Y F , |
null | |
null | 蔡丽娜, 隋迎玖, 刘大庆, 等, 2009.一次爆发性气旋引发的罕见暴风雪过程分析[J].北京大学学报(自然科学版), 45(4): 693-700.DOI: 10.13209/j.0479-8023.2009.103.Cai L N , |
null | |
null | 何立富, 齐道日娜, 余文, 2022.引发东北极端暴雪的黄渤海气旋爆发性发展机制[J].应用气象学报, 33(4): 385-399.DOI: 10.11898/1001-7313.20220401.He L F , |
null | |
null | 黄彬, 代刊, 钱奇峰, 等, 2013.引发黄渤海大风的黄河气旋诊断研究[J].气象, 39(3): 302-312.DOI: 10.7519/j.issn.1000-0526. 2013.03.004.Huang B , |
null | |
null | 黄彬, 钱传海, 聂高臻, 等, 2011.干侵入在黄河气旋爆发性发展中的作用[J].气象, 37(12): 1534-1543. |
null | |
null | 黄子怡, 赵宇, 李树岭, 等, 2023.东北地区温带气旋暴雪过程的大气河特征[J].高原气象, 42(3): 734-747.DOI: 10.7522/j.issn.1000-0534.2022.00076.Huang Z Y , |
null | |
null | 刘宁微, 齐琳琳, 韩江文, 2009.北上低涡引发辽宁历史罕见暴雪天气过程的分析[J].大气科学, 33(2): 275-284.DOI: 10.3878/j.issn.1006-9895.2009.02.07.Liu N W , |
null | |
null | 孙欣, 蔡芗宁, 陈传雷, 等, 2011.“070304”东北特大暴雪的分析[J].气象, 37(7): 863-870. |
null | |
null | 秦华锋, 金荣花, 2008. “ 0703”东北暴雪成因的数值模拟研究[J].气象, 34(4): 30-38.QinH F, JinR H, 2008.Numerical simulation study of the cause of snowstorm process in northeast of China on March 3-5 of 2007[J].Meteorological Monthly, 34(4): 30-38. |
null | 王达文, 1975.东亚大陆东岸的倒暖锋[J].气象, 1(10): 4-7.DOI: 10.7519/j.issn.1000-0526.1975.10.003.Wang D W , 1975.An inverted warm front on the east coast of the east Asian continent[J].Meteorological Monthly, 1(10): 4-7.DOI: 10. 7519/j.issn.1000-0526.1975.10.003 . |
null | 王洪庆, 张焱, 陶祖钰, 等, 2000.黄海气旋数值模拟的可视化[J].应用气象学报, 11(3): 282-286. |
null | |
null | 熊秋芬, 郭达烽, 牛宁, 等, 2016.温带气旋暖锋后弯云图特征及结构成因分析[J].暴雨灾害, 35(4): 297-305.DOI: 10.3969/j.issn.1004-9045.2016.04.001.Xiong Q F , |
null | |
null | 熊秋芬, 牛宁, 章丽娜, 2013.陆地上爆发性温带气旋的暖锋后弯结构分析[J].气象学报, 71(2): 239-249.DOI: 10.11676/qxxb2013.030.Xiong Q F , |
null | |
null | 杨贵名, 毛冬艳, 姚秀萍, 2006.梅雨期一次黄淮气旋发展的干侵入特征分析[J].热带气象学报, 22(2): 176-183. |
null | |
null | |
null | |
null | 易笑园, 李泽椿, 陈涛, 等, 2009.2007年3月3 |
null | -5 日强雨雪过程中的干冷空气活动及其作用[J].南京气象学院学报, 32(2): 306-313. |
null | 张雅乐, 俞小鼎, 2021.黄河气旋暴雨过程发展演变成因分析[J].高原气象, 40(1): 74-84.DOI: 10.7522/j.issn.1000-0534.2019.00103.Zhang Y L , |
null | |
null | 赵宇, 朱皓清, 蓝欣, 等, 2018.基于CloudSat资料的北上江淮气旋暴雪云系结构特征[J].地球物理学报, 61(12): 4789-4804.DOI: 10.6038/cjg2018L0697.Zhao Y , |
null | |
null | 周显伟, 赵宇, 祝玉梅, 等, 2018.黑龙江省两次温带气旋暴雪过程对比分析[J].冰川冻土, 40(6): 1195-1206.DOI: 10.7522/j.issn.1000-0240.2018.0417.Zhou X W , |
null |
/
〈 |
|
〉 |