Spatiotemporal Patterns of Precipitation in Qaidam Basin from 2000 to 2019 Base on the ANUSPLIN Model
Received date: 2023-07-06
Revised date: 2023-12-04
Online published: 2023-12-04
The Qaidam Basin is sensitive to the warming and humidification trend of climate change on the Qinghai-Xizang Plateau, and an ecologically vulnerable region.Evaluating its spatiotemporal patterns of precipitation is crucial for the rational utilization of water resources as well as ecological management.However, the scarcity and uneven distribution of meteorological stations within the basin poses a challenge to such analysis.This study was to explore an optimal method for precipitation interpolation in the basin in this context.Specifically, the Australian National University Spline (ANUSPLIN) model was used for the interpolation with different numbers of meteorological stations (9, 20, 40, 60, 80, 100, 120 140, 160 and 180 stations) within and around the basin and 9 kinds of thin disk smooth spline functions (various combinations of independent variables, covariates and spline times).We screened the optimal number of interpolation stations and the optimal function by accuracy assessments using the data in 2019.The spatiotemporal patterns of precipitation in this region from 2000 to 2019 were then analyzed.The results showed that: (1) The ANUSPLIN model achieved the highest accuracy with 120 meteorological stations and the function of trivariate local thin disk smooth spline (TVPTPS4).The root mean square error (RMSE), expected true mean square error (RTMSE) and signal-to-noise ratio (SNR) were less than 0.6 mm, 0.3 mm and 0.25, respectively, which was the lowest among all combinations.(2) Precipitation in the Qaidam Basin had substantial differences in regional distribution and seasonality.Both annual precipitation and seasonal precipitation were abundant in the east and scarce in the west, while the precipitation in summer was the highest, accounting for 62.13% of the annual total value.(3) From 2000 to 2019, both the annual precipitation and seasonal precipitation in the basin showed an increasing trend.The precipitation in summer showed a significant increasing trend, with a maximum growth rate of 5.85 mm·a-1 (P<0.05).The regions with significant trend accounted for approximately 42.36% of the total area of the basin.The results of this study demonstrate that the AUNSPLIN model can accurately reflect the distribution of precipitation in the Qaidam Basin, comparing with the ordinary Kriging and the inverse distance weighted methods.Obtaining an accurate precipitation patterns is of great theoretical and practical significance for the optimal management of water resources in the region.
Key words: Qaidam Basin; ANUSPLIN model; precipitation; spatial pattern; time changes
Wenqi ZHANG , Yuanyan ZHAO , Zongrui LAI , Bao CHAO , Le HAN . Spatiotemporal Patterns of Precipitation in Qaidam Basin from 2000 to 2019 Base on the ANUSPLIN Model[J]. Plateau Meteorology, 2024 , 43(3) : 737 -748 . DOI: 10.7522/j.issn.1000-0534.2023.00094
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 陈碧珊, 潘安定, 杨木壮, 2010. 近 50年柴达木盆地气候要素分布特征及变化趋势分析[J].干旱区资源与环境, 24(5): 117-123.DOI: 10.13448/j.cnki.jalre.2010.05.006.Chen B S , |
null | |
null | 陈金雨, 陶辉, 刘金平, 等, 2021.中巴经济走廊极端降水时空变化[J].高原气象, 40(5): 1048-1056.DOI: 10.7522/j.issn.1000-0534.2020.00103.Chen J Y , |
null | |
null | 陈荣, 段克勤, 尚溦, 等, 2023.基于CMIP6模式数据的1961-2099年青藏高原降水变化特征分析[J].高原气象, 42(2): 294-304.DOI: 10.7522/j.issn.1000-0534.2021.00084.Chen R , |
null | |
null | 戴升, 申红艳, 李林, 等, 2013.柴达木盆地气候由暖干向暖湿转型的变化特征分析[J].高原气象, 32(1): 211-220.DOI: 10.7522/j.issn.1000-0534.2012.00021.Dai S , |
null | |
null | 党学亚, 常亮, 卢娜, 2019.青藏高原暖湿化对柴达木水资源与环境的影响[J].中国地质, 46(2): 359-368. |
null | |
null | 杜玉娥, 刘宝康, 贺卫国, 等, 2018.1976-2017年柴达木盆地湖泊面积变化及其成因分析[J].冰川冻土, 40(6): 1275-1284. |
null | |
null | 傅小城, 王芳, 王浩, 等, 2011.柴达木盆地气温降水的长序列变化及与水资源关系[J].资源科学, 33(3): 408-415. |
null | |
null | 葛根巴图, 魏巍, 张晓, 等, 2020.柴达木盆地极端气候时空趋势及周期特征[J].干旱区研究, 37(2): 304-313.DOI: 10.13866/j.azr.2020.02.04.Gegen B T , |
null | |
null | 韩廷芳, 祁栋林, 陈宏松, 等, 2019.柴达木盆地降水的时空分布特征[J].沙漠与绿洲气象, 13(2): 69-75. |
null | |
null | 贾洋, 崔鹏, 2018.高山区多时间尺度Anusplin气温插值精度对比分析[J].高原气象, 37(3): 757-766.DOI: 10.7522/j.issn.1000-0534.2017.00072.Jia Y , |
null | |
null | 李林, 申红艳, 李红梅, 等, 2015.柴达木盆地气候变化的区域显著性及其成因研究[J].自然资源学报, 30(4): 641-650.DOI: 10.11849/zrzyxb.2015.04.010.Li L , |
null | |
null | 李任君, 高懋芳, 李强, 等, 2019.基于ANUSPLIN的降水空间插值方法研究[J].中国农业信息, 31(1): 48-57.DOI: 10.12105/j.issn.1672-0423.20190105.Li R J , |
null | |
null | 李新, 程国栋, 卢玲, 2003.青藏高原气温分布的空间插值方法比较[J].高原气象, 22(6): 565-573. |
null | |
null | 李月臣, 何志明, 刘春霞, 2014.基于台站观测数据的气温空间化方法评述[J].地理科学进展, 33(8): 1019-1028.DOI: 10.11820/dlkxjz.2014.08.002.Li Y C , |
null | |
null | 刘志红, |
null | |
null | 卢娜, 2014.柴达木盆地湖泊面积变化及影响因素分析[J].干旱区资源与环境, 28(8): 83-87.DOI: 10.13448/j.cnki.jalre. 2014.08.017.Lu N , 2014.Changes of lake area in Qaidam basin and the influence factors[J].Journal of Arid Land Resources and Environment, 28(8): 83-87.DOI: 10.13448/j.cnki.jalre. 2014.08.017 . |
null | 马佳宁, 高艳红, 2019. 近 50年黄河上游流域年均降水与极端降水变化分析[J].高原气象, 38(1): 124-135.DOI: 10.7522 / j.issn.1000-0534.2018.00126.Ma J N , |
null | |
null | 马诺, 唐冶, 常存, 等, 2020.基于DEM的气温空间插值方法比较[J].干旱气象, 38(3): 465-471.DOI: 10.11755 / j.issn.1006-7639(2020)-03-0465.Ma N , |
null | |
null | 梅晓丹, 李丹, 王强, 等, 2021.基于ANUSPLIN的小兴安岭地区降水格点数据空间插值[J].测绘与空间地理信息, 44(12): 6-10. |
null | |
null | 孟清, 白红英, 郭少壮, 2020.基于Anusplin秦岭地区近50多年来的降水时空变化[J].水土保持研究, 27 (2): 206-212.DOI: 10.13869/j.cnki.rswc.20191018.001.Meng Q , |
null | |
null | 彭旺, 李琼, 魏加华, 等, 2022.柴达木盆地东北缘山区和平原区雨滴谱特征对比研究[J].高原气象, 41(6): 1471-1480.DOI: 10.7522/j.issn.1000-0534.2021.00122.Peng W , |
null | |
null | 邱美娟, 刘布春, 刘园, 等, 2020.中国北方苹果主产省降水分布特征分析[J].中国农业气象, 41(5): 263-274.DOI: 10.3969/j.issn.1000-6362.2020.05.001.Qiu M J , |
null | |
null | 时兴合, 赵燕宁, 戴升, 等, 2005.柴达木盆地40多年来的气候变化研究[J].中国沙漠, 25(1): 125-130. |
null | |
null | 谭剑波, 李爱农, 雷光斌, 2016.青藏高原东南缘气象要素Anusplin和Cokriging空间插值对比分析[J].高原气象, 35(4): 875-886.DOI: 10.7522/j.issn.1000-0534.2015.00037.Tan J B , |
null | |
null | 王澄海, 张晟宁, 张飞民, 等, 2021.论全球变暖背景下中国西北地区降水增加问题[J].地球科学进展, 36(9): 980-989.DOI: 10.11867/j.issn.1001-8166.2021.087.Wang C H , |
null | |
null | 王新宇, 黄鹏程, 2020.基于GIS的气象要素插值方法比较研究[J].测绘与空间地理信息, 43(5): 167-170. |
null | |
null | 王远征, 马启民, 贾晓鹏, 2023.柴达木盆地灌木林地和高寒草甸蒸散发特征研究[J].高原气象, 42(3): 785-794.DOI: 10.7522/j.issn.1000-0534.2022.00055.Wang Y Z , |
null | |
null | 张春雨, 刘爱利, 吕嫣冉, 等, 2023.基于CMIP6青藏高原腹地气候模拟评估及时空分析[J].高原气象, 42(5): 1144-1159.DOI: 10.7522/j.issn.1000-0534.2022.00104.Zhang C Y , |
null | |
null | 张仁平, 张云玲, 郭靖, 等, 2018.新疆地区降水分布的空间插值方法比较[J].草业科学, 35(3): 521-529.DOI: 10.11829/j.issn.1001-0629.2016-0608.Zhang R P , |
null | |
null | 张玮玮, 张眉, 吴杨, 等, 2020.复杂地形下浙江夏季气候要素空间插值方法评价[J].干旱气象, 38(4): 674-682.DOI: 10.11755/ j.issn.1006-7639(2020)-04-0674.Zhang W W , |
null |
/
〈 |
|
〉 |