Spatiotemporal Patterns of Precipitation in Qaidam Basin from 2000 to 2019 Base on the ANUSPLIN Model

  • Wenqi ZHANG ,
  • Yuanyan ZHAO ,
  • Zongrui LAI ,
  • Bao CHAO ,
  • Le HAN
Expand
  • 1. Key Laboratory of National Forestry and Grassland Administration on Soil and Water Conservation,School of Soil and Water Conservation,Beijing Forestry University,Beijing 100083,China
    2. Yanchi Research Station,School of Soil and Water Conservation,Beijing Forestry University,Yanchi 751500,Ningxia,China

Received date: 2023-07-06

  Revised date: 2023-12-04

  Online published: 2023-12-04

Abstract

The Qaidam Basin is sensitive to the warming and humidification trend of climate change on the Qinghai-Xizang Plateau, and an ecologically vulnerable region.Evaluating its spatiotemporal patterns of precipitation is crucial for the rational utilization of water resources as well as ecological management.However, the scarcity and uneven distribution of meteorological stations within the basin poses a challenge to such analysis.This study was to explore an optimal method for precipitation interpolation in the basin in this context.Specifically, the Australian National University Spline (ANUSPLIN) model was used for the interpolation with different numbers of meteorological stations (9, 20, 40, 60, 80, 100, 120 140, 160 and 180 stations) within and around the basin and 9 kinds of thin disk smooth spline functions (various combinations of independent variables, covariates and spline times).We screened the optimal number of interpolation stations and the optimal function by accuracy assessments using the data in 2019.The spatiotemporal patterns of precipitation in this region from 2000 to 2019 were then analyzed.The results showed that: (1) The ANUSPLIN model achieved the highest accuracy with 120 meteorological stations and the function of trivariate local thin disk smooth spline (TVPTPS4).The root mean square error (RMSE), expected true mean square error (RTMSE) and signal-to-noise ratio (SNR) were less than 0.6 mm, 0.3 mm and 0.25, respectively, which was the lowest among all combinations.(2) Precipitation in the Qaidam Basin had substantial differences in regional distribution and seasonality.Both annual precipitation and seasonal precipitation were abundant in the east and scarce in the west, while the precipitation in summer was the highest, accounting for 62.13% of the annual total value.(3) From 2000 to 2019, both the annual precipitation and seasonal precipitation in the basin showed an increasing trend.The precipitation in summer showed a significant increasing trend, with a maximum growth rate of 5.85 mm·a-1P<0.05).The regions with significant trend accounted for approximately 42.36% of the total area of the basin.The results of this study demonstrate that the AUNSPLIN model can accurately reflect the distribution of precipitation in the Qaidam Basin, comparing with the ordinary Kriging and the inverse distance weighted methods.Obtaining an accurate precipitation patterns is of great theoretical and practical significance for the optimal management of water resources in the region.

Cite this article

Wenqi ZHANG , Yuanyan ZHAO , Zongrui LAI , Bao CHAO , Le HAN . Spatiotemporal Patterns of Precipitation in Qaidam Basin from 2000 to 2019 Base on the ANUSPLIN Model[J]. Plateau Meteorology, 2024 , 43(3) : 737 -748 . DOI: 10.7522/j.issn.1000-0534.2023.00094

References

null
Che Z F Wang W G Fu J Y2020.Vegetation response to precipitation anomalies under different climatic and biogeographical conditions in China[J].Scientific Reports10 (1): 830.DOI: 10. 1038/s41598-020-57910-1 .
null
Comber A Zeng W2019.Spatial interpolation using areal features: a review of methods and opportunities using new forms of data with coded illustrations[J].Geography Compass13(10): 1-23.DOI: 10.1111/gec3.12465 .
null
Guo B B Zhang J Xu T B, et al, 2022.Assessment of multiple precipitation interpolation methods and uncertainty analysis of hydrological models in Chaohe River basin, China[J].Water SA48(3): 324-334.DOI: 10.17159/wsa/2022.v48.i3.3884 .
null
Hofstra N New M McSweeney C2010.The influence of interpolation and station network density on the distributions and trends of climate variables in gridded daily data[J].Climate Dynamics35(5): 841-858.DOI: 10.1007/s00382-009-0698-1 .
null
Hutchinson M F1991.The application of thin plate splines to continent-wide data assimilation, data assimilation systems, BMRC Research Report NO.27[M].Melbourne: Bureau of Meteorology.
null
Hutchinson M F2004.ANUSPLIN version 4.3 user guide[M].Canberra: The Australia National University, Center for Resource and Environment Studies.
null
Lassegues P2018.Daily and climatological fields of precipitation over the western Alps with a high density network for the period of 1990-2012[J].Theoretical and Applied Climatology131(1/2): 1-17.DOI: 10.1007/s00704-016-1954-z .
null
Ozturk D Kilic F2016.Geostatistical approach for spatial interpolation of meteorological data[J].Anais da Academia Brasileira de Ciências88(4): 2121-2136.DOI: 10.1590/0001-3765201620150103 .
null
Zhang M J Wang S J2016.A review of precipitation isotope studies in China: Basic pattern and hydrological process[J].Journal of Geographical Sciences26(7): 921-938.DOI: 10.1007/s11442-016-1307-y .
null
陈碧珊, 潘安定, 杨木壮, 2010. 近 50年柴达木盆地气候要素分布特征及变化趋势分析[J].干旱区资源与环境, 24(5): 117-123.DOI: 10.13448/j.cnki.jalre.2010.05.006.Chen B S
null
Pan A D Yang M Z2010.Spatial and temporal characteristics and change trend of climatic elements of Qaidam basin in recent 50 years[J].Journal of A rid Land Resources and Environment24(5): 117-123.DOI: 10.13448/j.cnki.jalre.2010.05.006 .
null
陈金雨, 陶辉, 刘金平, 等, 2021.中巴经济走廊极端降水时空变化[J].高原气象40(5): 1048-1056.DOI: 10.7522/j.issn.1000-0534.2020.00103.Chen J Y
null
Tao H Liu J P, et al, 2021.Temporal and spatial variations of extreme precipitation in China-Pakistan economic corridor[J].Plateau Meteorology40(5): 1048-1056.DOI: 10.7522/j.issn.1000-0534.2020.00103 .
null
陈荣, 段克勤, 尚溦, 等, 2023.基于CMIP6模式数据的1961-2099年青藏高原降水变化特征分析[J].高原气象42(2): 294-304.DOI: 10.7522/j.issn.1000-0534.2021.00084.Chen R
null
Duan K Q Shang W, et al, 2023.Characteristics of precipitation change over the Qinghai-Xizang Plateau from 1961 to 2099 based on CMIP6 models[J].Plateau Meteorology42(2): 294-304.DOI: 10.7522/j.issn.1000-0534.2021.00084 .
null
戴升, 申红艳, 李林, 等, 2013.柴达木盆地气候由暖干向暖湿转型的变化特征分析[J].高原气象32(1): 211-220.DOI: 10.7522/j.issn.1000-0534.2012.00021.Dai S
null
Shen H Y Li L, et al, 2013.Analysis on climatic transition characteristic from warm-dry to warm-wet in Tsaidam Basin[J].Plateau Meteorology32(1): 211-220.DOI: 10.7522/j.issn.1000-0534.2012.00021 .
null
党学亚, 常亮, 卢娜, 2019.青藏高原暖湿化对柴达木水资源与环境的影响[J].中国地质46(2): 359-368.
null
Dang X Y Chang L Lu N2019.The impact of climatic warm-wet situation of the Tibetan Plateau on the water resources and environment in Qaidam Basin[J].Geology In China46(2): 359-368.
null
杜玉娥, 刘宝康, 贺卫国, 等, 2018.1976-2017年柴达木盆地湖泊面积变化及其成因分析[J].冰川冻土40(6): 1275-1284.
null
Du Y E Liu B K He W G, et al, 2018.Analysis on the variation and cause of the lake area in Qaidam Basin from 1976 to 2017[J].Journal of Glaciology and Geocryology40(6): 1275-1284.
null
傅小城, 王芳, 王浩, 等, 2011.柴达木盆地气温降水的长序列变化及与水资源关系[J].资源科学33(3): 408-415.
null
Fu X C Wang F Wang H, et al, 2011.Analysis of long-term changes in temperature and precipitation and their relationships with water resources in the Qaidam Basin in China[J].Resources Science33(3): 408-415.
null
葛根巴图, 魏巍, 张晓, 等, 2020.柴达木盆地极端气候时空趋势及周期特征[J].干旱区研究37(2): 304-313.DOI: 10.13866/j.azr.2020.02.04.Gegen B T
null
Wei W Zhang X, et al, 2020.Spatiotemporal trends and periodic features of climate extremes over the Qaidam Basin, China during 1960-2014[J].Arid Zone Research37(2): 304-313.DOI: 10.13866/j.azr.2020.02.04 .
null
韩廷芳, 祁栋林, 陈宏松, 等, 2019.柴达木盆地降水的时空分布特征[J].沙漠与绿洲气象13(2): 69-75.
null
Han T F Qi D L Chen H S, et al, 2019.Spatial and temporal distribution of precipitation in Qaidam Basin[J].Desert and Oasis Meteorology13(2): 69-75.
null
贾洋, 崔鹏, 2018.高山区多时间尺度Anusplin气温插值精度对比分析[J].高原气象37(3): 757-766.DOI: 10.7522/j.issn.1000-0534.2017.00072.Jia Y
null
Cui P2018.Contrastive analysis of temperature interpolation at different time scales in the Alpine Region by Anusplin[J].Plateau Meteorology37(3): 757-766.DOI: 10.7522 / j.issn.1000-0534.2017.00072 .
null
李林, 申红艳, 李红梅, 等, 2015.柴达木盆地气候变化的区域显著性及其成因研究[J].自然资源学报30(4): 641-650.DOI: 10.11849/zrzyxb.2015.04.010.Li L
null
Shen H Y Li H M, et al, 2015.Regional differences of climate change in Qaidam Basin and its contributing factors[J].Journal of Natural Resources30(4): 641-650.DOI: 10.11849/zrzyxb.2015.04.010 .
null
李任君, 高懋芳, 李强, 等, 2019.基于ANUSPLIN的降水空间插值方法研究[J].中国农业信息31(1): 48-57.DOI: 10.12105/j.issn.1672-0423.20190105.Li R J
null
Gao M F Li Q, et al, 2019.Research on rainfall spatial interpolation method based on ANUSPLIN[J].China Agricultural Informatics31(1): 48-57.DOI: 10.12105/j.issn.1672-0423.20190105 .
null
李新, 程国栋, 卢玲, 2003.青藏高原气温分布的空间插值方法比较[J].高原气象22(6): 565-573.
null
Li X Cheng G D Lu L2003.Comparison study of spatial interpolation methods of air temperature over Qinghai-Xizang Plateau[J].Plateau Meteorology22(6): 565-573.
null
李月臣, 何志明, 刘春霞, 2014.基于台站观测数据的气温空间化方法评述[J].地理科学进展33(8): 1019-1028.DOI: 10.11820/dlkxjz.2014.08.002.Li Y C
null
He Z M Liu C X2014.Review on spatial interpolation methods of temperature data from meteorological stations[J].Progress in Geography33(8): 1019-1028.DOI: 10.11820/dlkxjz.2014.08.002 .
null
刘志红, Li L T McVicar T R, 等, 2008.专用气候数据空间插值软件ANUSPLIN及其应用[J].气象34(2): 92-100.
null
Liu Z H Li L T McVicar T R, et al, 2008.Introduction of the professional interpolation software for meteorology data: ANUSPLINN[J].Meteorological Monthly34(2): 92-100.
null
卢娜, 2014.柴达木盆地湖泊面积变化及影响因素分析[J].干旱区资源与环境28(8): 83-87.DOI: 10.13448/j.cnki.jalre. 2014.08.017.Lu N , 2014.Changes of lake area in Qaidam basin and the influence factors[J].Journal of Arid Land Resources and Environment, 28(8): 83-87.DOI: 10.13448/j.cnki.jalre. 2014.08.017 .
null
马佳宁, 高艳红, 2019. 近 50年黄河上游流域年均降水与极端降水变化分析[J].高原气象, 38(1): 124-135.DOI: 10.7522 / j.issn.1000-0534.2018.00126.Ma J N
null
Gao Y H2019.Analysis of annual precipitation and extreme precipitation change in the upper Yellow River basin in recent 50 years[J].Plateau Meteorology38(1): 124-135.DOI: 10.7522 / j.issn.1000-0534.2018.00126 .
null
马诺, 唐冶, 常存, 等, 2020.基于DEM的气温空间插值方法比较[J].干旱气象38(3): 465-471.DOI: 10.11755 / j.issn.1006-7639(2020)-03-0465.Ma N
null
Tang Y Chang C, et al, 2020.Comparation of spatial interpolation methods of temperature based on DEM data[J].Journal of Arid Meteorology38(3): 465-471.DOI: 10.11755 / j.issn.1006-7639(2020)-03-0465 .
null
梅晓丹, 李丹, 王强, 等, 2021.基于ANUSPLIN的小兴安岭地区降水格点数据空间插值[J].测绘与空间地理信息44(12): 6-10.
null
Mei X D Li D Wang Q, et al, 2021.Spatial interpolation of precipitation grid data in Xiaoxing'anling region based on ANUSPLIN[J].Geomatics & Spatial Information Technology44(12): 6-10.
null
孟清, 白红英, 郭少壮, 2020.基于Anusplin秦岭地区近50多年来的降水时空变化[J].水土保持研究27 (2): 206-212.DOI: 10.13869/j.cnki.rswc.20191018.001.Meng Q
null
Bai H Y Guo S Z2020.Spatial-temporal variation of precipitation in Qinling area in recent 50 Years based on Anusplin[J].Research of Soil and Water Conservation27(2): 206-212.DOI: 10.13869/j.cnki.rswc.20191018.001 .
null
彭旺, 李琼, 魏加华, 等, 2022.柴达木盆地东北缘山区和平原区雨滴谱特征对比研究[J].高原气象41(6): 1471-1480.DOI: 10.7522/j.issn.1000-0534.2021.00122.Peng W
null
Li Q Wei J H, et al, 2022.The mountainous and plain areas on the northeastern margin of the Qaidam Basin contrast study on raindrop spectrum characteristics[J].Plateau Meteorology41(6): 1471-1480.DOI: 10.7522/j.issn.1000-0534.2021.00122 .
null
邱美娟, 刘布春, 刘园, 等, 2020.中国北方苹果主产省降水分布特征分析[J].中国农业气象41(5): 263-274.DOI: 10.3969/j.issn.1000-6362.2020.05.001.Qiu M J
null
Liu B C Liu Y, et al, 2020.Analysis on distribution characteristics of precipitation in major production provinces of apple in northern China[J].Chinese Journal of Agrometeorology41(5): 263-274.DOI: 10.3969/j.issn.1000-6362.2020.05.001 .
null
时兴合, 赵燕宁, 戴升, 等, 2005.柴达木盆地40多年来的气候变化研究[J].中国沙漠25(1): 125-130.
null
Shi X H Zhao Y N Dai S, et al, 2005.Research on climatic change of Qaidam Basin since 1961[J].Journal of Desert Research25(1): 125-130.
null
谭剑波, 李爱农, 雷光斌, 2016.青藏高原东南缘气象要素Anusplin和Cokriging空间插值对比分析[J].高原气象35(4): 875-886.DOI: 10.7522/j.issn.1000-0534.2015.00037.Tan J B
null
Li A N Lei G B2016.Contrast on Anusplin and Cokriging meteorological spatial interpolation in southeastern margin of Qinghai-Xizang Plateau[J].Plateau Meteorology35(4): 875-886.DOI: 10.7522/j.issn.1000-0534.2015.00037 .
null
王澄海, 张晟宁, 张飞民, 等, 2021.论全球变暖背景下中国西北地区降水增加问题[J].地球科学进展36(9): 980-989.DOI: 10.11867/j.issn.1001-8166.2021.087.Wang C H
null
Zhang S N Zhang F M, et al, 2021.On the increase of precipitation in the northwestern China under the global warming[J].Advances in Earth Science36(9): 980-989.DOI: 10.11867/j.issn.1001-8166.2021.087 .
null
王新宇, 黄鹏程, 2020.基于GIS的气象要素插值方法比较研究[J].测绘与空间地理信息43(5): 167-170.
null
Wang X Y Huang P C2020.Comparative study of interpolation methods of meteorological factors based on GIS[J].Geomatics & Spatial Information Technology43(5): 167-170.
null
王远征, 马启民, 贾晓鹏, 2023.柴达木盆地灌木林地和高寒草甸蒸散发特征研究[J].高原气象42(3): 785-794.DOI: 10.7522/j.issn.1000-0534.2022.00055.Wang Y Z
null
Ma Q M Jia X P2023.Evapotranspiration characteristics of shrub land and alpine meadow in Qaidam Basin[J].Plateau Meteorology42(3): 785-794.DOI: 10.7522/j.issn.1000-0534.2022.00055 .
null
张春雨, 刘爱利, 吕嫣冉, 等, 2023.基于CMIP6青藏高原腹地气候模拟评估及时空分析[J].高原气象42(5): 1144-1159.DOI: 10.7522/j.issn.1000-0534.2022.00104.Zhang C Y
null
Liu A L Y R, et al, 2023.Spatial-temporal analysis and assessment of CMIP6 based climate simulation over the Qinghai-Xizang (Tibet) Plateau's hinterland[J].Plateau Meteorology42(5): 1144-1159.DOI: 10.7522/j.issn.1000-0534.2022.00104 .
null
张仁平, 张云玲, 郭靖, 等, 2018.新疆地区降水分布的空间插值方法比较[J].草业科学35(3): 521-529.DOI: 10.11829/j.issn.1001-0629.2016-0608.Zhang R P
null
Zhang Y L Guo J, et al, 2018.Comparison of spatial interpolation methods for precipitation distribution in Xinjiang region[J].Pratacultural Science35(3): 521-529.DOI: 10.11829/j.issn.1001-0629.2016-0608 .
null
张玮玮, 张眉, 吴杨, 等, 2020.复杂地形下浙江夏季气候要素空间插值方法评价[J].干旱气象38(4): 674-682.DOI: 10.11755/ j.issn.1006-7639(2020)-04-0674.Zhang W W
null
Zhang M Wu Y, et al, 2020.Evaluation of spatial interpolation method about climatic elements in summer in Zhejiang province under complex topography[J].Journal of Arid Meteorology38(4): 674-682.DOI: 10.11755/ j.issn.1006-7639(2020)-04-0674 .
Outlines

/