Research on the Characteristics of TypicalSouthwest TypeBasin Vortex in the Sichuan Basin

  • Yaxin ZHANG ,
  • Dongbei XU ,
  • Yueqing LI ,
  • Yichao LI ,
  • Lan GAO ,
  • Ruotong YAN
Expand
  • 1. College of Atmospheric Sciences,Chengdu University of Information Technology,Chengdu 610225,Sichuan,China
    2. Chengdu Plateau Meteorological Research Institute of China Meteorological Administration,Chengdu 610072,Sichuan,China
    3. Shanxi Provincial Atmospheric Detection Technology Support Center,Xi'an 710014,Shanxi,China

Received date: 2023-10-25

  Revised date: 2023-12-15

  Online published: 2023-12-15

Abstract

Basin Vortex is a type of Southwest Vortex, which refers to the vortex generated in the Sichuan Basin on the 700 hPa isobaric surface, with two consecutive low pressures with closed Contour line or cyclonic circulation in the wind direction of three stations.It is the main system that causes precipitation in the Sichuan Basin, and the "southwest type" Basin Vortex is the most frequent and strong type of Basin Vortex.This article utilizes ERA5 (0.25°×0.25°) hourly reanalysis data, GPM satellite precipitation data, and the Southwest Low Eddy Yearbook explored the characteristics and development mechanism of a typical “southwest type” Basin Vortex that occurred in the Sichuan Basin from June 26 to 28, 2020.The results indicate that the Basin Vortex was generated in the southwestern part of the Sichuan Basin, then moved towards the northeast direction, reached the northeastern part of Sichuan, turned eastward, and disappeared after entering Chongqing, with a total life history of 48 hours.The formation and development of the Basin Vortex are closely related to its divergence zone located on the northeast side of the 200 hPa South Asian High and on the right side of the entrance area of the high-altitude jet stream, as well as the low-level decompression caused by the positive vorticity advection in front of the 500 hPa short wave trough.The southwest part of the Sichuan Basin at 700 hPa is located to the left front of the low-level jet stream, which is conducive to the development of convergent upward motion and the formation of low eddies.The high value area of frontogenesis in the northeast direction of the 700 hPa Basin Vortex, the strengthening of the low-level jet and the guidance of the southwest airflow in front of the 500 hPa high altitude trough are the main factors for the movement of the Basin Vortex towards the northeast direction.As the center of the 200 hPa South Asian High moves eastward over the Yangtze-Huaihe River and the upper level jet weakens, the 500 hPa shortwave trough moves eastward, and the Basin Vortex is located in the negative vorticity advection zone behind the trough.The vertical direction turns into a sinking motion, with surface pressure increasing and the low vortex gradually weakening and disappearing.Analysis of the vorticity budget equation reveals that low-level convergence is the main contributor to the increase in the Basin Vortex intensity, and the increase in positive vorticity of the Basin Vortex caused by low-level convergence almost runs through the entire life cycle of the vortex.In addition, the existence of high-altitude orthonormal vortices and the release of condensation latent heat from the Basin Vortex precipitation also play an important role in the development and movement of the Basin Vortex.

Cite this article

Yaxin ZHANG , Dongbei XU , Yueqing LI , Yichao LI , Lan GAO , Ruotong YAN . Research on the Characteristics of TypicalSouthwest TypeBasin Vortex in the Sichuan Basin[J]. Plateau Meteorology, 2024 , 43(4) : 905 -918 . DOI: 10.7522/j.issn.1000-0534.2023.00100

References

null
Chang C P Yi L Chen G T J2000.A numerical simulation of vortex development during the 1992 East Asian summer monsoon onset using the Navy’s regional model[J].Monthly Weather Review128(6): 1604-1631.DOI: 10.1175/1520-0493(2000)128<1604: ANSOVD>2.0.CO; 2 .
null
Feng S L Jin S L Fu S M, et al, 2020.Formation of a kind of heavy‐precipitation‐producing mesoscale vortex around the Sichuan Basin: an along‐track vorticity budget analysis[J].Atmospheric Science Letters21(3): e949.DOI: 10.1002/asl2.949 .
null
Fu S M Mai Z Sun J H, et al, 2019.Impacts of convective activity over the Tibetan Plateau on Plateau Vortex, Southwest Vortex, and downstream precipitation[J].Journal of The Atmospheric Sciences76(12): 3803-3830.
null
Fu S M Yu F Wang D H, et al, 2013.A comparison of two kinds of eastward‐moving mesoscale vortices during the mei‐yu period of 2010[J].Science China Earth Sciences56(2): 282-300.
null
Fu S M Zhang J P Sun J H, et al, 2014.A fourteen‐year climatology of the southwest vortex in summer[J].Atmospheric and Oceanic Science Letters7(6): 510-514.
null
Hoskins B J1997.A potential vorticity view of synoptic development[J].Meteorological Applications4(4): 325-334.
null
Hoskins B J Mcintyre M E Robertson A W1985.On the use and significance of isentropic potential vorticity maps[J].Quarterly Journal of the Royal Meteorological Society111(470): 877-946.
null
Liu C Li Y Q Liu Z M, et al, 2022.Physical formation mechanisms of the Southwest China Vortex[J].Atmosphere13(10): 1546.
null
Liu X Ma E Cao Z, et al, 2018.Numerical study of a southwest vortex rainstorm process influenced by the eastward movement of Tibetan Plateau Vortex[J].Advances in Meteorology, 2018(3): 1-10.
null
Zhang Y Fu S Sun J, et al, 2019.A 14‐year statistics‐based semi‐idealized modeling study on the formation of a type of heavy rain‐producing southwest vortex[J].Atmospheric Science Letters20(5): e894.
null
Zhong R Zhong L H Hua L J, et al, 2014.A climatology of the southwest vortex during 1979-2008[J].Atmospheric and Oceanic Science Letters7(6): 577-583.
null
陈启智, 黄奕武, 王其伟, 等, 2007.1990-2004年西南低涡活动的统计研究[J].南京大学学报(自然科学版)43(6): 633-642.
null
Chen Q Z Huang Y W Wang Q W, et al, 2007.A statistical study on the activity of southwest low vortex from 1990 to 2004[J].Journal of Nanjing University (Natural Science Edition)43(6): 633-642.
null
陈双, 孙继松, 何立富, 2022.四川盆地不同落区的三次强降水过程多尺度特征分析[J].高原气象41(5): 1190-1208.DOI: 10.7522/j.issn.1000-0534.2021.00060.Chen S
null
Sun J S He L F2022.Multiscale characteristics analysis of three heavy rainfall processes in different regions of Sichuan Basin[J].Plateau Meteorology41(5): 1190-1208.DOI: 10.7522/j.issn.1000-0534.2021.00060 .
null
陈涛, 张芳华, 端义宏, 2011.广西“6.12”特大暴雨中西南涡与中尺度对流系统发展的相互关系研究[J].气象学报69(3): 472-485.
null
Chen T Zhang F H Duan Y H2011.Study on the relationship between the southwest vortex and the development of mesoscale convective system in the "6.12" extremely heavy rainstorm in Guangxi[J].Journal of Meteorology69(3): 472-485.
null
陈忠明, 闵文彬, 崔春光, 2004.西南低涡研究的一些新进展[J].高原气象23(z1): 1-5.
null
Chen Z M Min W B Cui C G2004.Some new advances in the study of southwest low eddies[J].Plateau Meteorology23(z1): 1-5.
null
程麟生, 郭英华, 1988.“81.7”四川暴雨期西南涡生成和发展的涡源诊断[J].大气科学12(1): 18-26.
null
Cheng L S Guo Y H1988.Diagnosis of vortex source for generation and development of southwest vortex during "81.7" rainstorm in Sichuan[J].Atmospheric Science12(1): 18-26.
null
高守亭, 周玉淑, 2019.近年来中尺度涡动力学研究进展[J].暴雨灾害38(5): 431-439.
null
Gao S T Zhou Y S2019.Recent progress in mesoscale vortex dynamics research[J].Rainstorm Disaster38(5): 431-439.
null
高正旭, 王晓玲, 李维京, 2009.西南低涡的统计特征及其对湖北降水的影响[J].暴雨灾害28(4): 302-305+312.
null
Gao Z X Wang X L Li W J2009.The statistical characteristics of the southwest vortex and its impact on precipitation in Hubei[J].Rainstorm Disaster28(4): 302-305+312.
null
何光碧, 2012.西南低涡研究综述[J].气象38(2): 155-163.
null
He G B2012.A review of research on southwest low eddies[J].Meteorology38(2): 155-163.
null
何光碧, 高文良, 屠妮妮, 2009.两次高原低涡东移特征及发展机制动力诊断[J].气象学报67(4): 599-612.
null
He G B Gao W L Tu N N2009.Dynamic diagnosis of the eastward movement characteristics and development mechanism of two plateau low eddies[J].Journal of Meteorology67(4): 599-612.
null
李超, 李跃清, 蒋兴文, 2015.四川盆地低涡的月际变化及其日降水分布统计特征[J].大气科学39(6): 1191-1203.
null
Li C Li Y Q Jiang X W2015.The monthly variation of low eddies in the Sichuan Basin and their statistical characteristics of daily precipitation distribution[J].Atmospheric Science39(6): 1191-1203.
null
李国平, 2007.青藏高原动力气象学 第2版[M].北京: 气象出版社, 2007.Li G P, 2007.Dynamic meteorology of the Qinghai Tibet Plateau, 2nd edition[M].Beijing: China Meteorological Press, 2007.
null
李国平, 陈佳, 2018.西南涡及其暴雨研究新进展[J].暴雨灾害37(4): 293-302.
null
Li G P Chen J2018.New progress in the study of southwest vortex and its rainstorm[J].Rainstorm Disaster37(4): 293-302.
null
李强, 王秀明, 周国兵, 等, 2020.四川盆地西南低涡暴雨过程的短时强降水时空分布特征研究[J].高原气象39(5): 960-972.DOI: 10.7522/j.issn.1000-0534.2019.00096.Li Q
null
Wang X M Zhou G B, et al, 2020.Study on the spatial-temporal distribution characteristics of short-term heavy precipitation in the southwest vortex rainstorm process of Sichuan Basin[J].Plateau Meteorology39(5): 960-972.DOI: 10.7522/j.issn.1000-0534.2019.00096 .
null
李跃清, 2021.西南涡涡源研究的有关新进展[J].高原气象40(6): 1394-1406.DOI: 10.7522/j.issn.1000-0534.2021.zk005.Li Y Q , 2021.New advances in the study of southwest vortex sources[J].Plateau Meteorology, 40(6): 1394-1406.DOI: 10.7522/j.issn.1000-0534.2021.zk005 .
null
刘冲, 赵平, 2020.1979-2016年四川盆地低涡的气候特征分析[J].气候变化研究进展16(2): 203-214.
null
Liu C Zhao P2020.Analysis of climatic characteristics of low eddies in the Sichuan Basin from 1979 to 2016[J].Progress in Climate Change Research16(2): 203-214.
null
刘金卿, 刘红武, 徐靖宇, 2021.西南涡引发的强对流天气特征[J].高原气象40(3): 525-534.DOI: 10.7522/j.issn.1000-0534.2020.00027.Liu J Q
null
Liu H W Xu J Y2021.The characteristics of severe convective weather caused by the Southwest Vortex[J].Plateau Meteorology40(3): 525-534.DOI: 10.7522/j.issn.1000-0534.2020.00027 .
null
刘英, 王东海, 张中锋, 等, 2012.东北冷涡的结构及其演变特征的个例综合分析[J].气象学报70(3): 354-370.
null
Liu Y Wang D H Zhang Z F, et al, 2012.A comprehensive analysis of the structure and evolution characteristics of the Northeast cold vortex using a case study[J].Journal of Meteorology70(3): 354-370.
null
卢敬华, 1986.西南低涡概论[M].北京: 气象出版社, 1986.
null
Lu J H1986.Introduction to Southwest Low Eddies[M].Beijing: China Meteorological Press, 1986.
null
罗清, 郁淑华, 罗磊, 等, 2018.不同涡源西南涡的若干统计特征分析[J].高原山地气象研究38(4): 8-15.
null
Luo Q Yu S H Luo L, et al, 2018.Analysis of several statistical characteristics of southwest vortex with different vortex sources[J].Research on Plateau Mountain Meteorology38(4): 8-15.
null
潘旸, 李建, 宇如聪, 2011.东移西南低涡空间结构的气候学特征[J].气候与环境研究16(1): 60-70.
null
Pan Y Li J Yu R C2011.Climatological characteristics of the spatial structure of the southwestward moving vortex[J].Climate and Environmental Research16(1): 60-70.
null
任英杰, 雍斌, 鹿德凯, 等, 2019.全球降水计划多卫星降水联合反演IMERG卫星降水产品在中国大陆地区的多尺度精度评估[J].湖泊科学31(2): 560-572.
null
Ren Y J Yong B Lu D K, et al, 2019.Multi scale accuracy evaluation of IMERG satellite precipitation products in Chinese Mainland based on the joint retrieval of global precipitation program multi satellite precipitation[J].Lake Science31(2): 560-572.
null
寿绍文, 2010.位涡理论及其应用[J].气象36(3): 9-18.
null
Shou S W2010.Potential vortex theory and its applications[J].Meteorology36(3): 9-18.
null
汤欢, 傅慎明, 孙建华, 等, 2020.一次高原东移MCS与下游西南低涡作用并产生强降水事件的研究[J].大气科学44(6): 1275-1290.
null
Tang H Fu S M Sun J H, et al, 2020.A study on the eastward movement of the plateau and the interaction with the downstream southwest vortex, resulting in a heavy rainfall event[J].Atmospheric Science44(6): 1275-1290.
null
王晓芳, 廖移山, 闵爱荣, 等, 2007.影响“05.06.25”长江流域暴雨的西南低涡特征[J].高原气象26(1): 197-205.DOI: 10.3321/j.issn: 1000-0534.2007.01.023.Wang X F
null
Liao Y S Min A R, et al, 2007.Characteristics of southwest vortex affecting "05.06.25" rainstorm in the Yangtze River basin[J].Plateau Meteorology26(1): 197-205.DOI: 10.3321/j.issn: 1000-0534.2007.01.023 .
null
肖递祥, 郁淑华, 屠妮妮, 2016.高原低涡移出高原后持续活动的典型个例分析[J].高原气象35(1): 43-54.DOI: 10.7522/j.issn.1000-0534.2015.00002.Xiao D X
null
Yu S H Tu N N2016.Typical case analysis of sustained activity of plateau vortices after moving out of the plateau[J].Plateau Meteorology35(1): 43-54.DOI: 10.7522/j.issn.1000-0534.2015.00002 .
null
肖贻青, 娄盼星, 李明娟, 等, 2023.西北涡与西南涡共同作用引发秦巴区域大暴雨的成因分析[J].高原气象42(1): 98-107.DOI: 10.7522/j.issn.1000-0534.2022.00013.Xiao Y Q
null
Lou P X Li M J, et al, 2023.Analysis on the cause of heavy rainstorm in Qinling Bazhong region caused by the joint action of northwest vortex and southwest vortex[J].Plateau Meteorology42(1): 98-107.DOI: 10.7522/j.issn.1000-0534.2022.00013 .
null
杨克明, 林建, 康志明, 等, 2006.2004年7月黄淮特大暴雨的天气动力学分析[J].高原气象25(5): 781-791.YangK M, LinJ, KangZ M, et al, 2006.Weather dynamics analysis of extremely heavy rainstorm over the Yellow River and Huaihe River in July 2004[J].Plateau Meteorology, 25(5): 781-791.
null
于玉斌, 姚秀萍, 2000.对华北一次特大台风暴雨过程的位涡诊断分析[J].高原气象19(1): 111-120.
null
null
张元春, 孙建华, 傅慎明, 2012.冬季一次引发华北暴雪的低涡涡度分析[J].高原气象31(2): 387-399.
null
Zhang Y C Sun J H Fu S M2012.Analysis of low eddy vorticity caused by a winter blizzard in North China[J].Plateau Meteorology31(2): 387-399.
null
中国气象局成都高原气象研究所, 中国气象学会高原气象学委员会, 2020.西南低涡年鉴[M].科学出版社.Chengdu Plateau Meteorological Research Institute of China Meteorological Administration, Plateau Meteorology Committee of China Meteorological Society, 2020.Southwest low vortex yearbook[M].Science Press.
null
周春花, 肖递祥, 郁淑华, 2022.持续东北移和在四川盆地停滞的九龙涡结构特征比较[J].高原气象41(5): 1220-1231.DOI: 10.7522/j.issn.1000-0534.2021.00044.Zhou C H
null
Xiao D X Yu S H2022.Comparison of the structural characteristics of the Jiulong Vortex, which continues to move northeast and stagnates in the Sichuan Basin[J].Plateau Meteorology41(5): 1220-1231.DOI: 10.7522/j.issn.1000-0534.2021.00044 .
null
朱乾根, 2007.天气学原理和方法 第4版[M].北京: 气象出版社.Zhu Q G, 2007.Principles and methods of weather science, 4th Edition[M].Beijing: China Meteorological.
null
宗志平, 陈涛, 徐珺, 等, 2013.2012年初秋四川盆地两次西南涡暴雨过程的对比分析与预报检验[J].气象39(5): 567-576.
null
Zong Z P Chen T Xu J, et al, 2013.Comparative analysis and prediction test of two southwest vortex rainstorm processes in Sichuan Basin in early autumn of 2012[J].Meteorology39(5): 567-576.
Outlines

/