Study on the Phenological Changes of Snow and Lake Ice in Qinghai Lake Basin based on MODIS Data
Received date: 2023-10-23
Revised date: 2024-02-19
Online published: 2024-02-19
Phenological changes are of great significance to the study of climate response and ecological environment.Based on the MODIS V6 snow product and reflectivity product in the past 20 years, the snow and lake ice phenology in the Qinghai Lake Basin were obtained, and the spatial distribution characteristics of the two were analyzed.On this basis, Theil-Sen Median method and linear regression method were used to analyze the variation trend of snow phenology and lake ice phenology, as well as the correlation between them in low altitude areas.The results show that: (1) Freeze-up start, Break-up start and Exist Duration of lake ice in Qinghai Lake are in the range of 321~389 d, 425~464 d and 0~174 d, respectively.On the whole, Freeze-up start and Break-up start of lake ice were delayed, and the delay rates were 0.3 d·a-1 and 0.2 d·a-1, respectively.Exist Duration of lake ice showed a shortening trend, with a shortening rate of 0.6 d·a-1.There is a significant correlation between lake ice phenology and longitude.From east to west, Freeze-up start is postponed, Break-up start is advanced, and Exist Duration of lake ice is shortened.(2) Start of snow cover days, End of snow cover days and Snow cover days in Qinghai Lake Basin are distributed in the range of 275~404 d, 353~484 d and 3~209 d, respectively.Among them, start of snow cover days and End of snow cover days showed an early trend and a delayed trend respectively, and the change rates were 0.8 d·a-1 and 0.11 d·a-1 respectively.Snow cover days showed an increasing trend, with a growth rate of 0.6 d·a-1.Snow phenology is closely related to altitude.With the increase of altitude, start of snow cover days is advanced, End of snow cover days is delayed, and Snow cover days increases.(3) Air temperature and negative accumulated temperature in winter are important factors affecting lake ice phenology.With the increase of temperature and negative accumulated temperature in winter, Freeze-up start will be delayed, Break-up start will be advanced, and Exist Duration of lake ice will be shortened.For snow phenology, there is a significant negative correlation between Snow cover days and the temperature.The temperature decreases and Snow cover days increases.(4) There is a potential relationship between some snow cover and lake ice phenology parameters in low-altitude watersheds.There is a significant negative correlation between the beginning date of snow cover and the beginning date of lake ice freezing, and the correlation coefficient is -0.404.As the lake surface insulation layer, the increase of snow cover days will also greatly slow down the speed of lake ice melting, resulting in the delay of lake ice melting date.Therefore, there is a positive correlation between the two, and the correlation coefficient is 0.349.The change law of ecosystem in the basin revealed by this study is of positive significance to the local ecosystem, and can provide theoretical basis and technical support for the environmental monitoring of Qinghai Lake Basin.
Key words: Qinghai Lake basin; lake ice; snow cover; phenology
Jiaojiao SHEN , Yanlong SHEN , Zhiqi OUYANG , Hui GUO , Xiaoyan WANG . Study on the Phenological Changes of Snow and Lake Ice in Qinghai Lake Basin based on MODIS Data[J]. Plateau Meteorology, 2024 , 43(5) : 1177 -1189 . DOI: 10.7522/j.issn.1000-0534.2024.00021
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 曹晓卫, 2021.乌梁素海湖冰生消过程观测与模拟研究[D].大连: 大连理工大学.Cao X W, 2021.Observation and simulation research on growth and decay processes of ice cover on Lake Wuliangsuhai[D].Dalian: Dalian University of Technology. |
null | 单帅, 沈润平, 师春香, 等, 2020.中国北部积雪区冬季地表温度和2 m气温再分析数据评估[J].高原气象, 39(1): 37-47.DOI: 10.7522/j.issn.000-0534.2019.00003.Shan S , |
null | |
null | 高扬, 郝晓华, 和栋材, 等, 2019.基于不同土地覆盖类型NDSI阈值优化下的青藏高原积雪判别[J].冰川冻土, 41(5): 1162-1172.DOI: 10.7522/j.issn.1000-0240.2019.1155.Gao Y , |
null | |
null | 郝晓华, 赵琴, 纪文政, 等, 2022.1980-2020年AVHRR中国积雪物候数据集[J].中国科学数据(中英文网络版), 7(3): 50-59.DOI: 10.11922/11-6035.ncdc.2021.0026.zh.Hao X H , |
null | |
null | 康世昌, 郭万钦, 钟歆玥, 等, 2020.全球山地冰冻圈变化、 影响与适应[J].气候变化研究进展, 16(2): 143-152.DOI: 10.12006/j.issn.1673-1719.2019.257.Kang S C , |
null | |
null | 李广泳, 李小雁, 赵国琴, 等, 2014.青海湖流域草地植被动态变化趋势下的物候时空特征[J].生态学报, 34(11): 3038-3047.DOI: 10.5846/stxb201211251668.Li G Y , |
null | |
null | 李林, 申红艳, 刘彩红, 等, 2020.青海湖水位波动对气候暖湿化情景的响应及其机理研究[J].气候变化研究进展, 16(5): 600-608.DOI: 10.12006/j.issn.1673-1719.2019.243.Li L , |
null | |
null | |
null | |
null | 李延, 赵瑞瑜, 陈斌, 2023.青藏高原冬春多源积雪资料年际变化尺度上的适用性分析[J/OL].高原气象: 1-14.[2023-12-25]. |
null | |
null | 牛瑞佳, 文莉娟, 王梦晓, 等, 2023.积雪和沙尘对冰封期青海湖辐射和温度的影响[J].高原气象, 42(4): 913-922.DOI: 10.7522/j.issn.1000-0534.2023.00021.Niu R J , |
null | |
null | 庞毓雯, 黄雨馨, 巩志, 等, 2020.基于多光谱遥感的湖冰物候监测方法研究进展[J].海洋湖沼通报, 173(2): 90-99.DOI: 10.13984/j.cnki.cn37-1141.2020.02.011.Pang Y W , |
null | |
null | 祁苗苗, 姚晓军, 刘时银, 等, 2020.1973-2018年青海湖岸线动态变化[J].湖泊科学, 32(2): 573-586.DOI: CNKI: SUN: FLKX.0.2020-02-026.Qi M M , |
null | |
null | |
null | |
null | 邰雪楠, 王宁练, 吴玉伟, 等, 2022.近20 a色林错湖冰物候变化特征及其影响因素[J].湖泊科学, 34(1): 334-348.DOI: 10.18307/2022.0127.Tai X N , |
null | |
null | 汪关信, 张廷军, 杨瑞敏, 等, 2020.从第三极到北极: 湖冰研究进展[J].冰川冻土, 42(1): 124-139.DOI: 10.7522/j.issn.1000-0240.2020.0008.Wang G X , |
null | |
null | 王琪, 吴成永, 陈克龙, 等, 2019.基于MODIS NPP数据的青海湖流域产草量与载畜量估算研究[J].生态科学, 38(4): 178-185.DOI: CNKI: SUN: STKX.0.2019-04-024.Wang Q , |
null | |
null | 王卫国, 李弘毅, 朱小凡, 等, 2022.1979-2018年青藏高原不同地区积雪季极端降水水汽来源分析[J].高原气象, 41(6): 1367-1383.DOI: 10.7522/j.issn.1000-0534.2021.00080.Wang W G , |
null | |
null | 王迎春, 王蕊, 李胜阳, 等, 2023.西天山某流域积雪变化及其与径流量相关性分析[J].人民黄河, 45(4): 40-46.DOI: 10.3969/j.issn.1000-1379.2023.04.007.Wang Y C , |
null | |
null | 王智颖, 2017.青藏高原湖泊环境要素的多源遥感监测及其对气候变化响应[D].济南: 山东师范大学.Wang Z Y, 2017.Multi-source remote sensing monitoring of lake environmental factors in Qinghai-Tibet Plateau and its application to Climate change response[D].Jinan: Shangdong Normal University. |
null | 杨芳芳, 2021.基于多源遥感数据的青藏高原积雪与植被变化关系研究[D].北京: 中国地质大学(北京).DOI: 10.27493/d.cnki.gzdzy.2021.001728.Yang F F, 2021.Study on the relationship between snow and vegetation change in Qinghai-Tibet Plateau based on multi-source remote sensing data[D].Beijing: China University of Geosciences (Beijing).DOI: 10.27493/d.cnki.gzdzy.2021.001728 . |
null | 杨雅茹, 赵春雷, 李弘毅, 等, 2022.北京冬奥会张家口赛区未来三十年积雪物候数据集[J].中国科学数据(中英文网络版), 7(3): 70-83.DOI: 10.11922/11-6035.ncdc.2021.0023.zh.Yang Y R , |
null | |
null | 姚晓军, 李龙, 赵军, 等, 2015.近10 年来可可西里地区主要湖泊冰情时空变化[J].地理学报, 70(7): 1114-1124.DOI: 10.11821/dlxb201507008.Yao X J , |
null | |
null | 张洪源, 吴艳红, 刘衍君, 等, 2018.近20 年青海湖水量变化遥感分析[J].地理科学进展, 37(6): 823-832.DOI: 10.18306/dlkxjz.2018.06.009.Zhang H Y , |
null | |
null | 张敬书, 荆林海, 王思远, 2023. 近 20年青藏高原云分布特征及云参数时空变化分析[J].高原气象, 42(5): 1107-1118.DOI: 10.7522/j.issn.1000-0534.2022.00081.Zhang J S , |
null | |
null | 赵琴, 郝晓华, 王建, 等, 2022.2000-2020年MODIS中国积雪物候数据集[J].中国科学数据(中英文网络版), 7(3): 60-69.DOI: 10.11922/11-6035.ncdc.2021.0027.zh.Zhao Q , |
null | |
null | 赵仪欣, 文莉娟, 王梦晓, 等, 2023.基于能量平衡的分析模型在青海湖湖冰模拟中的应用[J].高原气象, 42(3): 590-602.DOI: 10.7522/j.issn.1000-0534.2022.00042.Zhao Y X , |
null | |
null | 钟歆玥, 康世昌, 郭万钦, 等, 2022.最近十多年来冰冻圈加速萎缩--IPCC第六次评估报告之冰冻圈变化解读[J].冰川冻土, 44(3): 946-953.DOI: 10.7522/j.issn.1000-0240.2021.0090.Zhong X Y , |
null | |
null | 庄立超, 2021.巴丹吉林沙漠湖冰物候对气候变化与水循环的响应[D].兰州: 兰州大学.DOI: 10.27204/d.cnki.glzhu.2021. 000414.Zhuang L C, 2021.Response of lake ice phenology in Badain Jaran Desert to climate change and hydrological cycle[D].Lanzhou: Lanzhou University.DOI: 10.27204/d.cnki.glzhu.2021.000414 . |
/
〈 |
|
〉 |