Simulation and Prediction of Spring Snow Cover in Northern Hemisphere by CMIP6 Model

  • Xulei WANG ,
  • Hui SUN ,
  • Hui GUO ,
  • Chula SA ,
  • Fanhao MENG ,
  • Min LUO
Expand
  • 1. College of Geographical Science,Inner Mongolia Normal University,Hohhot 010022,Inner Mongolia,China
    2. Inner Mongolia Key Laboratory of Remote Sensing and Geographic Information Systems,Inner Mongolia Normal University,Hohhot 010022,Inner Mongolia,China
    3. State Key Laboratory of Hydroscience and Engineering,Department of Hydraulic Engineering,Tsinghua University,Beijing 100084,China
    4. Department of Water Conservancy Engineering,North China University of Water Conservancy and Electric Power,Zhengzhou 450046,Henan,China

Received date: 2023-10-24

  Revised date: 2024-03-04

  Online published: 2024-03-04

Abstract

As one of the most sensitive natural elements in response to climate change, snow cover has a significant effect on the Earth's surface radiation balance and water cycle.The global snow cover area is approximately 46×106 km2 and 98% of the snow cover distributed in the Northern Hemisphere.Due to its distinctive radiative properties (high surface albedo) and thermal characteristics (low thermal conductivity), changes in snow cover play a crucial role in the energy balance and water cycle between land and the atmosphere.In the context of global warming, the snow cover in the Northern Hemisphere has been decreasing in recent decades, especially in the spring.Therefore, the capabilities of CMIP6 (Coupled Model Intercomparison Project Phase 6) data to simulate the snow cover area were evaluated based on observational data and the future changes in snow cover were also assessed using a multi-model average in this study.By using the snow cover products from the National Oceanic and Atmospheric Administration/National Climatic Data Center (NOAA/NCDC) as reference data, the Taylor skill scoring, relative deviation, and other methods were applied to evaluate the spring snow cover (SCF) data in the Northern Hemisphere from the International Coupled Model Comparison Project Phase 6 (CMIP6) during 1982 -2014.The ensemble average of the top three models was further selected to predict the spatiotemporal variation characteristics of SCF under different emission scenarios from 2015 to 2099, providing insights into the modeling capabilities of CMIP6 and future changes in SCF.During the historical period (1982 -2014), SCF was characterized by high coverage at high latitudes and low coverage at low latitudes, with high-altitude regions such as Tibetan Plateau and eastern Asia having higher snow coverage than those at the same latitudes.Overall, 68.37% of the regions in the Northern Hemisphere showed a decreasing trend in SCF, while 31.63% of the regions showed an increasing trend in SCF.Most CMIP6 models overestimated SCF in the Tibetan Plateau region compared to the reference data.In addition, most models simulated larger areas with a decreasing trend in SCF than those evaluated by the reference data and underestimated SCF in March, April, and May.Various models exhibited differing abilities to simulate SCF, with NorESM2-MM, CESM2, BBC-CSM2-MR, NorESM2-LM, and CESM2-WACCM demonstrating superior capabilities.The Multi-Model Ensemble Mean (MME) consistently outperformed individual models, closely aligning with observational data.There were significant differences in the ability of the CMIP6 models to simulate the spatial distribution, inter-annual variation trends, and intra-annual variations of SCF in the Northern Hemisphere.At the end of the 21st-century (2067 -2099), SCF in the Northern Hemisphere exhibited a decreasing trend in most areas, which intensifies with increasing emission intensity.The changes in SCF were relatively consistent under different emission scenarios before 2040.SCF maintains a steady state under the SSP1-2.6 scenario, showed a slight decreasing trend under the SSP2-4.5 scenario, and showed a significant decreasing trend under the SSP5-8.5 scenario after 2040.

Cite this article

Xulei WANG , Hui SUN , Hui GUO , Chula SA , Fanhao MENG , Min LUO . Simulation and Prediction of Spring Snow Cover in Northern Hemisphere by CMIP6 Model[J]. Plateau Meteorology, 2024 , 43(6) : 1397 -1415 . DOI: 10.7522/j.issn.1000-0534.2024.00029

References

null
Ahmed K Sachindra D A Shahid S, et al, 2019.Selection of multi-model ensemble of general circulation models for the simulation of precipitation and maximum and minimum temperature based on spatial assessment metrics[J].Hydrology and Earth System Sciences23(11): 4803-4824.DOI: 10.5194/hess-23-4803-2019 .
null
Armstrong R L Brodzik M J2005.Northern Hemisphere EASE-Grid weekly snow cover and sea ice[M/CD].National Snow and Ice Data Center, Boulder, CO, USA.
null
Bao Q Liu Y Wu G X, et al, 2020.CAS FGOALS-f3-H and CAS FGOALS-f3-L outputs for the high-resolution model intercomparison project simulation of CMIP6[J].Atmospheric and Oceanic Science Letters13(6): 576-581.DOI: 10.1080/16742834. 2020.1814675 .
null
Brown R D Robinson D A2011.Northern Hemisphere spring snow cover variability and change over 1922-2010 including an assessment of uncertainty[J].The Cryosphere5(1): 219-229.DOI: 10.5194/tc-5-219-2011 .
null
Brutel-Vuilmet C Menegoz M Krinner G2013.An analysis of present and future seasonal Northern Hemisphere land snow cover simulated by CMIP5 coupled climate models[J].The Cryosphere7(1): 67-80.DOI: 10.5194/tc-7-67-2013 .
null
Cohen J Agel L Barlow M, et al, 2023.No detectable trend in mid-latitude cold extremes during the recent period of Arctic amplification[J].Communications Earth & Environment4(1): 341.DOI: 10.1038/S43247-023-01008-9 .
null
Derksen C Brown R2012.Spring snow cover extent reductions in the 2008-2012 period exceeding climate model projections[J].Geophysical Research Letters, 39, L19504.DOI: 10.1029/2012GL053387 .
null
Eyring V Bony S Meehl G A, et al, 2016.Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization[J].Geoscientific Model Development9(5): 1937-1958.DOI: 10.5194/gmd-9-1937-2016 .
null
Feng M Xing Y Yang J, et al, 2020.Unprecedented Europe heat in June-July 2019: risk in the historical and future context[J].Geophysical Research Letters47(11): e2020GL087809.DOI: 10. 1029/2020gl087809 .
null
Guan X Zeng X Shi R, et al, 2023.Changes in snow parameterization over typical vegetation in the Northern Hemisphere[J].Atmospheric and Oceanic Science Letters16(2): 100325.DOI: 10.1016/J.AOSL.2022.100325 .
null
Guo H Yang Y Zhang W, et al, 2021.Attributing snow cover extent changes over the Northern Hemisphere for the past 65 years[J].Environmental Research Communications3(6): 061001.DOI: 10.1088/2515-7620/AC03C8 .
null
Harris I Osborn T J Jones P, et al, 2020.Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset[J].Scientific Data7(1): 109.DOI: 10.1038/s41597-020-0453-3 .
null
Infanti J M Kirtman B P Aumen N G, et al, 2020.Assessment of uncertainty in multi‐model means of downscaled South Florida precipitation for projected (2019-2099) climate[J].International Journal of Climatology40(5): 2764-277.DOI: 10.1002/joc.6365 .
null
Jin Q Wei J Lau W K M, et al, 2021.Interactions of Asian mineral dust with Indian summer monsoon: Recent advances and challenges[J].Earth-Science Reviews, 215: 103562.DOI: 10.1016/J.EARSCIREV.2021.103618 .
null
Jones P W1999.First-and second-order conservative remapping schemes for grids in spherical coordinates[J].Monthly Weather Review127(9): 2204-2210.DOI: 10.1175/1520-0493(1999)127 .
null
Kothiyal S Sandhu S S Kaur J2023.Modelling the climate change impact of mitigation (RCP 2.6) and high emission (RCP 8.5) scenario on maize yield and possible adaptation measures in different agroclimatic zones of Punjab, India[J].Journal of the Science of Food and Agriculture103(14).DOI: 10.1002/JSFA.12779 .
null
Kouki K R?is?nen P Luojus K, et al, 2021.Evaluation of Northern Hemisphere snow water equivalent in CMIP6 models with satellite-based SnowCCI data during 1982-2014[J].The Cryosphere, 2022: 1-32.DOI: 10.5194/tc-2021-195 .
null
Lafferty D C Sriver R L2023.Downscaling and bias-correction contribute considerable uncertainty to local climate projections in CMIP6[J].Authorea Preprints2023 (6): 158.DOI: 10.1038/S41612-023-00486-0 .
null
Li J Huo R Chen H, et al, 2021.Comparative assessment and future prediction using CMIP6 and CMIP5 for annual precipitation and extreme precipitation simulation[J].Frontiers in Earth Science, 9: 687976.DOI: 10.3389/feart.2021.687976 .
null
Li Y Wang T Zeng Z, et al, 2016.Evaluating biases in simulated land surface albedo from CMIP5 global climate models[J].Journal of Geophysical Research: Atmospheres121(11): 6178-6190.DOI: 10.1002/2016JD024774 .
null
Lutz A F Immerzeel W W Siderius C, et al, 2022.South Asian agriculture increasingly dependent on meltwater and groundwater[J].Nature Climate Change12(6): 566-573.DOI: 10.1038/S41558-022-01355-Z .
null
Meredith M Sommerkorn M Cassotta S, et al, 2019.chapter 3, IPCC special report on the ocean and cryosphere in a changing climate[R].Polar Regions, Chapter 3, 203-320.DOI: 10.1017/9781009157964.005 .
null
Milly P C D Dunne K A2020.Colorado River flow dwindles as warming-driven loss of reflective snow energizes evaporation[J].Science367(6483): 1252-1255.DOI: 10.1126/science.aay9187 .
null
Mudryk L Santolaria-Otín M Krinner G, et al, 2020.Historical Northern Hemisphere snow cover trends and projected changes in the CMIP6 multi-model ensemble[J].The Cryosphere14(7): 2495-2514.DOI: 10.5194/tc-14-2495-2020 .
null
Müller G V Lovino M A2023.Variability and changes in temperature, precipitation and snow in the Desaguadero-Salado-Chadileuvú-Curacó Basin, Argentina[J].Climate11(7): 135.DOI: 10.3390/CLI11070135 .
null
Pascoe C Lawrence B N Guilyardi E, et al, 2019.Designing and documenting experiments in CMIP6[J].Geoscientific Model Development Discussions, 2019: 1-27.DOI: 10.5194/gmd-2019-98 .
null
Robinson D A Dewey K F Heim R R1993.Global snow cover monitoring: An update[J].Bulletin of the American Meteorological Society74(9): 1689-1696.DOI: 10.1175/1520-0477(1993)074 .
null
Santolaria-Otín M Zolina O2020.Evaluation of snow cover and snow water equivalent in the continental Arctic in CMIP5 models[J].Climate Dynamics55(11/12): 2993-3016.DOI: 10.1007/s00382-020-05434-9 .
null
Sturm M Goldstein M A Parr C2017.Water and life from snow: a trillion dollar science question[J].Water Resources Research53(5): 3534-3544.DOI: 10.1002/2017WR020840 .
null
Tang Z Wang X Wang J, et al, 2017.Spatiotemporal variation of snow cover in Tianshan Mountains, Central Asia, based on cloud-free MODIS fractional snow cover product, 2001-2015[J].Remote Sensing9(10): 1045.DOI: 10.3390/rs9101045 .
null
Taylor K E2001.Summarizing multiple aspects of model performance in a single diagram[J].Journal of Geophysical Research: Atmospheres106(D7): 7183-7192.DOI: 10.1029/2000JD900719 .
null
Zhou T J Zou L W Chen X L2019.Commentary on the coupled model intercomparison project phase 6 (CMIP6)[J].Advances in Climate Change Research15(5): 445.DOI: 10.12006/j.issn.1673-1719.2019.193 .
null
van Kempen G van der Wiel K Melsen L A2021.The impact of hydrological model structure on the simulation of extreme runoff events[J].Natural Hazards and Earth System Sciences Discussions21(3): 961-976.DOI: 10.5194/NHESS-21-961-2021 .
null
Verma S Kumar K Verma M K, et al, 2023.Comparative analysis of CMIP5 and CMIP6 in conjunction with the hydrological processes of reservoir catchment, Chhattisgarh, India[J].Journal of Hydrology: Regional Studies, 50: 101533.DOI: 10.1016/J.EJRH.2023.101533 .
null
Xia K Wang B2015, Evaluation and projection of snow cover fraction over Eurasia[J].Climatic and Environmental Research20(1): 41-52.DOI: 10.3878/j.issn.1006-9585.2014.13126 .
null
Yalcin E2023.Quantifying climate change impacts on hydropower production under CMIP6 multi-model ensemble projections using SWAT model[J].Hydrological Sciences Journal68(13): 1915-1936.DOI: 10.1080/02626667.2023.2245815 .
null
Zhu X Lee S Y Wen X, et al, 2021.Historical evolution and future trend of Northern Hemisphere snow cover in CMIP5 and CMIP6 models[J].Environmental Research Letters16(6): 065013.DOI: 10.1088/1748-9326/AC0662 .
null
除多, 扎西顿珠, 次丹玉珍, 2021.NOAA IMS雪冰产品在青藏高原积雪监测中的适用性分析[J].冰川冻土43(6): 1659-1672.DOI: 10.7522/j.issn.1000-0240.2021.0051.Chu D
null
ZhaXi D Z CiDan Y Z.Analysis on applicability of NOAA IMS snow and ice products in snow cover monitoring over the Tibetan Plateau[J].Journal of Glaciology and Geocryology43(6): 1659-1672.DOI: 10.7522/j.issn.1000-0240.2021.0051 .
null
曹言超, 王晓春, 2022.青藏高原春季积雪对北半球夏季季节内振荡的影响[J].高原气象41(6): 1384-1398.DOI: 10.7522/j.issn.1000-0534.2021.00087.Cao Y C
null
Wang X C2022.Influence of the Qinghai-Xizang Plateau Spring Snow Cover Variation on the Boreal Summer Intraseasonal Oscillation[J].Plateau Meteorology41(6): 1384-1398.DOI: 10.7522/j.issn.1000-0534.2021.00087 .
null
郭辉, 杨雨亭, 2022.基于卫星遥感、 大气再分析及气候模式数据的北半球春季积雪反照率反馈评估研究[J].中国科学(地球科学)52(8): 1627-1640.DOI: 10.1360/N072021-0193.Guo H
null
Yang Y T2022.Spring snow-albedo feedback from satellite observation, reanalysis and model simulations over the Northern Hemisphere[J].Science China Earth Sciences65(8): 1463-1476,
null
李延, 赵瑞瑜, 陈斌, 2023.青藏高原冬春多源积雪资料年际变化尺度上的适用性分析[J/OL].高原气象, 1-14.[2024-02-28].DOI: 10.7522/j.issn.1000-0534.2023.00057.Li Y
null
Zhao R Y Chen B2023. Applicability of multi-source winter-spring snow cover data over the Qinghai-Xizang (Tibetan) Plateau on the scale of interannual variation[J].Plateau Meteorology1-14[2024-02-28].DOI: 10.7522/j.issn.1000-0534.2023.00057 .
null
马丽娟, 罗勇, 秦大河, 2011.CMIP3模式对未来50a欧亚大陆雪水当量的预估[J].冰川冻土33(4): 707-720.DOI: 10.3969/j.issn.1005-362X.2015.10.021.Ma L J
null
Luo Y Qin D H2011.Snow water equivalent over Eurasia in next 50 years projected by CMIP3 models[J].Journal of Glaciology and Geocryology, 33: 707-720.DOI: 10.3969/j.issn.1005-362X.2015.10.021 .
null
谭湘蛟, 杨燕, 2023.积雪变化对地下生态系统影响的研究进展[J].冰川冻土45(2): 724-737.DOI: 10.7522/j.issn.1000-0240.2023.0055.Tan X J
null
Yang Y2023.Research progress on effects of snow cover change on belowground ecosystem[J].Journal of Glaciology and Geocryology45(2): 724-737.
null
杨明鑫, 肖天贵, 李勇, 等, 2022.CMIP6 模式对我国西南地区夏季气候变化的模拟和预估[J].高原气象41(6): 1557-1571.DOI: 10.7522/j.issn.1000-0534.2021.00119.Yang M X
null
Xiao T G LI Y, et al, 2022.Evaluation and projection of climate change in Southwest China using CMIP6 Models[J].Plateau Meteorology41(6): 1557-1571.DOI: 10.7522/j.issn.1000-0534.2021.00119 .
null
杨笑宇, 林朝晖, 王雨曦, 等, 2017.CMIP5耦合模式对欧亚大陆冬季雪水当量的模拟及预估[J].气候与环境研究22(3): 253-270.
null
Yang X Y Lin Z H Wang Y X, et al, 2017.Simulation and projection of snow water equivalent over the Eurasian continent by CMIP5 coupled models[J].Climatic and Environmental Research22 (3): 253-270, doi: 10.3878/j.issn.1006-9585.2016.16104 .
null
朱献, 董文杰, 2013.CMIP5耦合模式对北半球 3-4月积雪面积的历史模拟和未来预估[J].气候变化研究进展, 9(3): 173-180.DOI: 10.3969/j.issn.1673-1719.2013.03.003.Zhu X
null
Dong W J2013.Evaluation and projection of northern hemisphere March-April snow covered Area simulated by CMIP5 coupled climate models[J].Climate Change Research9(3): 173-180.DOI: 10.3969/j.issn.1673-1719.2013.03.003 .]
null
周天军, 陈梓明, 邹立维, 等, 2020.中国地球气候系统模式的发展及其模拟和预估[J].气象学报78(3): 332-350.DOI: 10.11676/qxxb2020.029.Zhou T J
null
Chen Z M Zou L W, et al, 2020.Development of climate and earth system models in China: past achievements and new CMIP6 results[J].Acta Meteorologica Sinica78(3): 332-350.DOI: 10.11676/qxxb2020.029 .
null
张玉庆, 2023.北半球中高纬地表反照率对积雪变化的响应研究[D].长春: 东北师范大学.DOI: 10.27011/d.cnki.gdbsu. 2022.001121.Zhang Y Q, 2023.Response of Surface Albedo to Changes of Snow Parameters in the Middle and High Latitudes of Northern Hemisphere[D].Changchun: Northeast Normal University.DOI: 10.27011/d.cnki.gdbsu.2022.001121 .
Outlines

/