null | Amante C, Eakins B W, 2009.ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis.NOAA technical memorandum NESDIS NGDC-24.[DB]. National Geophysical Data Center, NOAA.DOI: 10.7289/V5C8276M . |
null | Bao X H, Zhang F Q, 2013.Evaluation of NCEP-CFSR, NCEP-NCAR, ERA-interim, and ERA-40 reanalysis datasets against independent sounding observations over the Tibetan Plateau[J]. Journal of Climate, 26(1): 206-214.DOI: 10.1175/JCLI-D-12-00056.1 . |
null | Feng X Y, Liu C H, Rasmussen R, et al, 2014.A 10-yr climatology of Tibetan Plateau Vortices with NCEP climate forecast system reanalysis[J]. Journal of Applied Meteorology and Climatology, 53(1): 34-46.DOI: 10.1175/JAMC-D-13-014.1 . |
null | Gao L, Hao L, Chen X W, 2014.Evaluation of ERA-interim monthly temperature data over the Tibetan Plateau[J]. Journal of Mountain Science, 11(5): 1154-1168.DOI: 10.1007/s11629-014-3013-5 . |
null | Hersbach H, BellL B, Berrisford P, et al, 2020.The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 146(730): 1999-2049.DOI: 10.1002/qj.3803 . |
null | Immerzeel W W, van Beek L P H, Bierkens M F P, 2010.Climate change will affect the Asian water towers[J]. Science, 328(5984): 1382-1385.DOI: 10.1126/science.1183188 . |
null | Kruschke J K, Liddell T M, 2018.The bayesian new Statistics: hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective[J]. Psychonomic Bulletin & Review, 25(1): 178-206.DOI: 10.3758/s13423-016-1221-4 . |
null | Li L, Zhang R H, Wen M, 2017.Genesis of southwest vortices and its relation to Tibetan Plateau vortices[J]. Quarterly Journal of the Royal Meteorological Society, 143(707): 2556-2566.DOI: 10.1002/qj.3106 . |
null | Li L, Zhang R H, Wu P L, 2020.Evaluation of NCEP‐FNL and ERA‐Interim Data Sets in detecting Tibetan Plateau Vortices in May-August of 2000-2015[J]. Earth and Space Science, 7(3): e2019EA000907.DOI: 10.1029/2019EA000907 . |
null | Lin Z Q, Guo W D, Ge J, et al, 2021a.Increased Tibetan Plateau vortex activities under 2 ℃ warming compared to 1.5 ℃ warming: NCAR CESM low-warming experiments[J]. Advances in Climate Change Research, 12(3): 322-332.DOI: 10.1016/j.accre.2021.05.009 . |
null | Lin Z Q, 2015.Analysis of Tibetan Plateau vortex activities using ERA-Interim data for the period 1979-2013[J]. Journal of Meteorological Research, 29(5): 720-734.DOI: 10.1007/s13351-015-4273-x . |
null | Lin Z Q, Guo W D, Jia L, et al, 2020.Climatology of Tibetan Plateau vortices derived from multiple reanalysis datasets[J]. Climate Dynamics, 55(7): 2237-2252.DOI: 10.1007/s00382-020-05380-6 . |
null | Lin Z Q, Guo W D, Yao X P, et al, 2021b.Tibetan Plateau vortex‐associated precipitation and its link with the Tibetan Plateau heating anomaly[J]. International Journal of Climatology, 41(14): 6300-6313.DOI: 10.1002/joc.7195 . |
null | Lin Z Q, Yao X P, Guo W D, et al, 2021c.Vertical structure of Tibetan Plateau Vortex in boreal summer[J]. Theoretical and Applied Climatology, 145(2): 427-440.DOI: 10.1007/s00704-021-03640-x . |
null | Lü S N, Schalge B, Garfias P S, et al, 2020.Required sampling density of ground-based soil moisture and brightness temperature observations for calibration and validation of L-band satellite observations based on a virtual reality[J]. Hydrology and Earth System Sciences, 24(4): 1957-1973.DOI: 10.5194/hess-24-1957-2020 . |
null | Mu?oz S J, 2019.ERA5-Land monthly averaged data from 1950 to present.[DB].Copernicus Climate Change Service (C3S) Climate Data Store (CDS).DOI: 10.24381/cds.68d2bb30 . |
null | Qin J, Yang K, Liang S L, et al, 2009.The altitudinal dependence of recent rapid warming over the Tibetan Plateau[J]. Climatic Change, 97(1/2): 321-327.DOI: 10.1007/s10584-009-9733-9 . |
null | Qiu J, 2008.China: The third pole[J]. Nature, 454(7203): 393-396.DOI: 10.1038/454393a . |
null | Rangwala I, 2013.Amplified water vapour feedback at high altitudes during winter[J]. International Journal of Climatology, 33(4): 897-903.DOI: 10.1002/joc.3477 . |
null | Shapiro S S, Wilk M B, 1965.An analysis of variance test for normality (complete samples)[J]. Biometrika, 52(3/4): 591-611.DOI: 10.2307/2333709 . |
null | Su J Y, Duan A M, Xu H M, 2017.Quantitative analysis of surface warming amplification over the Tibetan Plateau after the late 1990s using surface energy balance equation[J]. Atmospheric Science Letters, 18(3): 112-117.DOI: 10.1002/asl.732 . |
null | Tao S Y, Ding Y H, 1981.Observational evidence of the influence of the Qinghai-Xizang (Tibet) Plateau on the occurrence of heavy rain and severe convective storms in China[J]. Bulletin of the American Meteorological Society, 62(1): 23-30.DOI: 10. 1175/1520-0477(1981)062<0023: Oeotio>2.0.Co; 2 . |
null | White J H R, Walsh J E, Thoman R L, 2021.Using Bayesian statistics to detect trends in Alaskan precipitation[J]. International Journal of Climatology, 41(3): 2045-2059.DOI: 10.1002/joc. 6946 . |
null | Wu D, Zhang F M, Wang C H, 2018.Impacts of diabatic heating on the genesis and development of an Inner Tibetan Plateau Vortex[J]. Journal of Geophysical Research: Atmospheres, 123(20): 11691-11704.DOI: 10.1029/2018jd029240 . |
null | Yang K, Wu H, Qin J, et al, 2014.Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: a review[J]. Global and Planetary Change, 112: 79-91.DOI: 10. 1016/j.gloplacha.2013.12.001 . |
null | Yao T D, Thompson L, Yang W, et al, 2012.Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2(9): 663-667.DOI: 10.1038/nclimate1580 . |
null | Yao T D, Xue Y K, Chen D L, et al, 2019.Recent Third pole's rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: multidisciplinary approach with observations, modeling, and analysis[J]. Bulletin of the American Meteorological Society, 100(3): 423-444.DOI: 10.1175/bams-d-17-0057.1 . |
null | You Q L, Min J Z, Zhang W, et al, 2015.Comparison of multiple datasets with gridded precipitation observations over the Tibetan Plateau[J]. Climate Dynamics, 45(3-4): 791-806.DOI: 10.1007/s00382-014-2310-6 . |
null | Yu S H, Gao W L, Peng J, et al, 2014.Observational facts of sustained departure plateau vortexes[J]. Journal of Meteorological Research, 28(2): 296-307.DOI: 10.1007/s13351-014-3023-9 . |
null | Zhao K G, Wulder M A, Hu T X, et al, 2019.Detecting change-point, trend, and seasonality in satellite time series data to track abrupt changes and nonlinear dynamics: a Bayesian ensemble algorithm[J]. Remote Sensing of Environment, 232.DOI: 10. 1016/j.rse.2019.04.034 . |
null | Zhou T, Popescu S C, Lawing A M, et al, 2018.Bayesian and classical machine learning methods: a comparison for tree species classification with LiDAR waveform signatures[J]. Remote Sensing, 10(1): 39.DOI: 10.3390/rs10010039 . |
null | |
null | Xiao Z X, Wang Z Q, 2018.Impacts of the Tibetan Plateau winter/spring snow depth and surface heat source on Asian summer monsoon: A review[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 42 (4): 755-766.DOI: 10.3878/j.issn.1006-9895.1801.17247 . |
null | |
null | Xiao Z X, Wu G X, 2016.Characteristics of climate change over the Tibetan Plateau under the global warming during 1979-2014[J]. Climate Change Research, 12(5): 374-381.DOI: 10.12006/j.issn.1673-1719.2016.039 . |
null | 郭维栋, 马柱国, 王会军, 2007.土壤湿度——一个跨季度降水预测中的重要因子及其应用探讨[J].气候与环境研究, (1): 20-28. |
null | Guo W D, Ma Z G, Wang H J, 2007.Soil moisture-an important factor of seasonal precipitation prediction and its application[J].Climatic and Environmental Research, (1): 20-28. |
null | |
null | Fan G Z, Hua W, et al, 2021.Progress in the study of influence of the Qinghai-Xizang Plateau land atmo sphere interaction on East Asia regional climate[J]. Plateau Meteorology, 40(6): 1263-1277.DOI: 10.7522/j.issn.1000- 0534.2021.zk018 . |
null | |
null | Lu H G, Huang C H, et al, 2016.A climatology of the surface heat source on the Tibetan Plateau in summer and its impacts on the formation of the Tibetan Plateau vortex[J]. Chinese Journal of Atmospheric Sciences, 40 (1): 131-141.DOI: 10.3878/j.issn.1006-9895.1504.15125 . |
null | |
null | Lü S H, Fan G Z, 2019.Analysis of the influence of the Qinghai-Tibetan Plateau surface energy change on the formation of the plateau vortex in summer[J]. Plateau Meteorology, 38(6): 1172-1180.DOI: 10.7522/j.issn.1000-0534.2018.00154 . |
null | 林志强, 2021.青藏高原低涡年际年代际变化特征、 机理及其未来预估[D].南京: 南京大学, 1-178. |
null | Lin Z Q, 2021.The interannual and interdecadal characteristics and mechaganisms of Tibetan Plateau vortex and the future projections[D].Nanjing: Nanjing University, 1-178. |
null | 林志强, 郭维栋, 2022.多再分析数据得到的高原低涡数据集(1979-2021)[DB].国家青藏高原科学数据中心, https: //doi.org/10.11888/Atmos.tpdc.272374.Lin Z Q, Guo W D, 2022.Database of the Tibetan Plateau vortex derived from multiple reanalysis (1979-2021)[DB].National Tibetan Plateau / Third Pole Environment Data Center. |
null | |
null | Guo W D, Yao X P, et al, 2023.Reexamine the Tibetan Plateau vortices sources based on multiple resource datasets [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 47(3): 837-852.DOI: 10.3878/j.issn.1006-9895.2211.21262 . |
null | |
null | Zhou Z B, Jia L, 2013.Objective identifying method of Qinghai-Xizang Plateau vortex using NCEP/NCAR reanalysis dataset[J]. Plateau Meteorology, 32(6): 1580-1588.DOI: 10.7522/j.issn.1000-0534.2012.00153 . |
null | 吕美仲, 侯志明, 周毅, 2004.动力气象学[M].北京: 气象出版社, 124-128. |
null | Lv M Z, Hou Z M, Zhou Y, 2004.Dynamic meteorology[M].Beijing: China Meteorological Press, 124-128. |
null | |
null | Hu Z Y, Wang B B, et al, 2021.The review of the observation experiments on land-atmosphere interaction progress on the Qinghai-Xizang (Tibetan) Plateau[J]. Plateau Meteorology, 40(6): 1241-1262.DOI: 10.7522/j.issn.1000-0534.2021.zk006 . |
null | |
null | Yang K, Zhang F M, et al, 2021.Climate effects of soil freeze-thaw process over Qinghai-Xizang Plateau: progress and perspectives[J]. Plateau Meteorology, 40(6): 1318-1336.DOI: 10.7522/j.issn.1000-0534.2021.zk021 . |
null | |
null | Ma Y M, Wu W Y, 2023.Characteristics of distributions and changes of surface sensible and latent heat fluxes on the Qinghai-Xizang Plateau based on the Noah-MP Land Surface Model[J]. Plateau Meteorology, 42(1): 25-34.DOI: 10.7522/j.issn.1000-0534.2022.00036 . |
null | 王鑫, 李跃清, 郁淑华, 等, 2009.青藏高原低涡活动的统计研究[J].高原气象, 28(1): 64-71. |
null | Wang X, Li Y Q, Yu S H, et al, 2009.Statistical study on the Plateau Low Vortex activities[J].Plateau Meteorology, 28(1): 64-71. |
null | 文军, 蓝永超, 苏中波, 等, 2011.黄河源区陆面过程观测和模拟研究进展[J].地球科学进展, 26(6): 575-585. |
null | Wen J, Lan Y C, Su Z B, et al, 2011.Advances in observation and modeling of land surface processes over the source region of the Yellow River[J].Advances in Earth Science, 26(6): 575-585. |
null | 叶笃正, 高由禧, 1979.青藏高原气象学[M].北京: 科学出版社, 220-224. |
null | Ye D Z, Gao Y X, 1979.Qinghai-Xizang plateau meteorology[M].Beijing: Science Press, 220-224. |
null | 张博, 李国平, 2017.基于CFSR资料的青藏高原低涡客观识别技术及应用[J].兰州大学学报(自然科学版), 53(1): 106-111+118. |
null | Zhang B, Li G P, 2017.An objective identification of the Tibetan plateau vortex based on climate forecast system reanalysis data[J].Journal of Lanzhou University: Natural Sciences, 53(1): 106-111+118. |
null | |
null | Su F G, Jiang Z H, et al, 2015.An overview of projected climate and environmental changes across the Tibetan Plateau in the 21st century (in Chinese)[J]. Chinese Science Bulletin, 60(32): 3036-3047.DOI: 10.1360/N972014-01296 . |
null | |
null | Li Y Q, Guo X L, et al, 2018.The Tibetan Plateau surface-atmosphere coupling system and its weather and climate effects: The Third Tibetan Plateau Atmospheric Scientific Experiment[J]. Acta Meteorologica Sinica, 76(6): 833-860.DOI: 10.11676/qxxb2018.060 . |