The Characteristics of Atmospheric Precipitable Water Vapor Distribution and Its Relationship with Precipitation over Tarim Basin and Its Surrounding Area

  • Jing LIU ,
  • Zhaoxu LIU ,
  • Lianmei YANG ,
  • Yushu ZHOU
Expand
  • 1. Institute of Desert Meteorology,China Meteorological Administration,Urumqi 830002,Xinjiang,China
    2. Xinjiang Cloud Precipitation Physics and Cloud Water Resources Development Laboratory,Urumqi 830002,Xinjiang,China
    3. Field Scientific Observation Base of Cloud Precipitation Physics in West Tianshan Mountains,Urumqi 830002,Xinjiang,China
    4. Center for Xinjiang lightning protection and disaster reduction,Urumqi 830002,Xinjiang,China
    5. Laboratory of Cloud-Precipitation Physics and Severe Storms,Institute of Atmospheric Physics,Chinese Academy of Science,Beijing 100029,China
    6. School of Earth and Planetary Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

Received date: 2023-04-17

  Revised date: 2023-10-09

  Online published: 2023-10-09

Abstract

Using the precipitable atmospheric water vapor (PWV) data of 17 ground-based GPS remote sensing stations, hourly and daily precipitation data of 14 meteorological stations in Tarim Basin and its surrounding areas from July 2018 to June 2022, this study analyzed the PWV distribution characteristics and its relationship with precipitation in the western (region A) and the eastern (region B) part of Tarim basin.The results show that: (1) The average annual PWV is largest in the northern and southwestern plain areas of the basin, and the average annual PWV is inversely proportional to the altitude at stations with over 1300 m, while that concentrated on 10~12 mm at stations with altitude below 1300 m.The average PWV value in summer is twice than that in spring and autumn at all GPS stations.(2) The monthly distribution of PWV in region A and region B presents a unimodal type, with the peaks occurred in August and in July, respectively.On the rain-day and no-rain day in region A, the both peak value of PWV occurred at 23:00 (Beijing Time, after the same), While, the peak value of PWV occurred at 11:00 on rain-day and 17:00 on no-rain day in region B, respectively.(3) The peak of ΔPWV (PWV minus monhly mean PWV) at most stations occurred at 0~1 h before precipitation start time in region A, and within 1 h before and after precipitation in region B.In spring, the variation of PWV before the precipitation in region B is more severe than that in region A.In summer, there are more weather processes with σPWV (PWV divide monthly mean PWV) reached 1~1.8 times at 1 h and 5~6 h before the beginning of precipitation in region A and region B.In autumn and winter, The peak of σPWV are concentrated in 1.4~2.0 times and 1.6~2.4 times in region B, respectively.(4) At the end of precipitation in stations with altitude below 1400 m, the PWV value was concentrated in 10~20 mm during May to June and in 15~25 mm during July to August.In stations with altitude over 1400 m, the PWV value is increasing from 15~25 mm to 25~35 mm from May to August at the end of precipitation.

Cite this article

Jing LIU , Zhaoxu LIU , Lianmei YANG , Yushu ZHOU . The Characteristics of Atmospheric Precipitable Water Vapor Distribution and Its Relationship with Precipitation over Tarim Basin and Its Surrounding Area[J]. Plateau Meteorology, 2024 , 43(3) : 617 -634 . DOI: 10.7522/j.issn.1000-0534.2023.00083

References

null
Baker H C Dodson A H Penna N T, et al, 2001.Ground-based GPS water vapor estimate: potential for meteorological forecasting[J].Journal of atmospheric and solar terrestrial Physics, 63: 1305-1314.DOI: 10.1016/S1364-6826(00)00249-2 .
null
Benevides P Catalao J Miranda P M2015.On the inclusion of GPS precipitable water vapor in the nowcasting of rainfall[J].Natural Hazards & Earth System Science15(12): 2605-2616.DOI: 10.5194/nhess-15-2605-2015 .
null
Duan J Bevis M Fang P, et al, 1996.GPS meteorology: direct-estimation of the absolute value of precipitable water[J].Journal of Applied Meteorology35(6): 830-838.DOI: 10.1175/1520-0450(1996)035<0830: GMDEOT>2.0.CO; 2
null
Liu J Liu F, Dilinuer, et al, 2020.Analysis of the water vapor transport and accumulation mechanism during “7.31” extreme rainstorm event in the south-eastern Hami area, China[J].Meteorological Application27(4): e1933.DOI: 10.1002/met.1933
null
Liu Y Zhao Q Z Yao W Q, et al, 2019.Short-term rainfall forecast model based on the improved BP-NN algorithm[J].Scientific Reports, 9: 19751.DOI: 10.1038/s41598-019-56452-5
null
Rocken C VanHove T Johmson J, et al, 1995.GPS/Storm-GPS sensing of atmospheric water vapor foremeteorology[J].Journal of Atmospheric and Oceanic Technology, 12: 468-478.DOI: 10.1175/1520-0426(1995)012<0468: GSOAWV>2.0.CO; 2
null
Wang J H Zhang L Y Dai A G2005.Global estimates of water-vapor-weighted mean temperature of the atmosphere for GPS applications [J].Journal of Geophysical Research, 110, D21101.DOI: 1029/2005JD006215 .
null
Zhao Y Huang A N Zhou Y, et al, 2016.The impacts of the summer plateau monsoon over the Tibetan Plateau on the rainfall in the Tarim Basin, China [J].Theoretical And Applied Climatology126(1/2): 265-272.DOI: 10.1007/s00704-015-1576-x .
null
曹云昌, 方宗义, 夏青, 2005.GPS遥感的大气可降水量与局地降水关系的初步分析[J].应用气象学报16(1): 54-59.DOI: 10.3969/j.issn.1001-7313.2005.01.006.Cao Y C
null
Fang Z Y Xia Q2005.Relationship between GPS precipitable water vapor and precipitation [J].Journal of Applied Meteorological Science16(1): 54-59.DOI: 10.3969/j.issn.1001-7313.2005.01.006 .
null
陈宏, 林炳章, 张叶辉, 2014.PMP估算中大气可降水量计算方法的探讨[J].水文34(3): 1-5.DOI: 10.3969/j.issn.1000-0852.2014.03.001.Chen H
null
Lin B Z Zhang Y H2014.Comparison of calculation methods for estimating atmospheric precipitable water in estimation of PMP [J].Journal of China Hydrology34(3): 1-5.DOI: 10.3969/j.issn.1000-0852.2014.03.001 .
null
陈俊勇, 1998.地基GPS遥感大气水汽含量的误差分析[J].测绘学报27(2): 113-118.DOI: 10.3321/j.issn: 1001-1595. 1998.02.004.Chen J Y , 1998.On the error analysis for the remote sensing of atmospheric water vapor by ground based GPS [J].Acta Geodaetica et Cartographica Sinica, 27(2): 113-118.DOI: 10.3321/j.issn: 1001-1595.1998.02.004 .
null
程鹏, 罗汉, 刘琴, 等, 2021.基于地基GPS的祁连山大气可降水量特征[J].气象47(9): 1135-1145.DOI: 10.7519/j.issn.1000-0526.2021.09.009.Cheng P
null
Luo H Liu Q, et al, 2021.Characteristics of precipitable water vapor in Qilian mountains based on ground-based GPS data [J].Meteorological Monthly47(9): 1135-1145.DOI: 10.7519/j.issn.1000-0526.2021.09.009 .
null
程鹏, 王研峰, 罗汉, 等, 2022.基于GPS的河西走廊干旱区大气可降水量特征[J].高原气象41(5): 1281-1290.DOI: 10.7522/j.issn.1000-0534.2021.0005.Cheng P
null
Wang Y F Luo H, et al, 2022.Characteristics of precipitable water vapor in Arid areas of the Hexi corridor based on GPS measurements [J].Plateau Meteorology41(5): 1281-1290.DOI: 10.7522/j.issn.1000-0534.2021.0005 .
null
楚艳丽, 郭英华, 张朝林, 等, 2007.地基GPS水汽资料在北京“7·10”暴雨过程研究中的应用[J].气象33(12): 16-22.DOI: 10.3969/j.issn.1000-0526.2007.12.003.Chu Y L
null
Guo Y H Zhang C L, et al, 2007.Application of the ground based GPS/PW data to investigate the "7·10" heavy rainfall event in Beijing [J].Meteorological Monthly33(12): 16-22.DOI: 10.3969/j.issn.1000-0526.2007.12.003 .
null
崔丽娜, 崔彩霞, 李春华, 等, 2012.塔克拉玛干沙漠及其周边山区水汽时空分布特征[J].安徽农业科学40(35): 17244-17248.DOI: 10.13989/j.cnki.0517-6611.2012.35.017.Cui L N
null
Cui C C Li C H, et al, 2012.The temporal and spatial distribution characteristics of precipitable water in Taklimakan desert and the surrounding mountains [J].Journal of Anhui Agricultural Sciences40(35): 17244-17248.DOI: 10.13989/j.cnki.0517-6611.2012.35.017 .
null
崔丽娜, 史玉光, 崔彩霞, 等, 2010.塔克拉玛干沙漠腹地2009年大气水汽含量的日变化特征[J].干旱气象28(4): 407-410.DOI: 10.3969/j.issn.1006-7639.2010.04.006.Cui L N
null
Shi Y G Cui C X, et al, 2010.Diurnal variation of atmospheric water vapor content in 2009 over Taklimakan desert [J].Journal of Arid Meteorology28(4): 407-410.DOI: 10.3969/j.issn.1006-7639.2010.04.006 .
null
付志康, 万蓉, 于胜杰, 等, 2017.湖北地基GPS大气可降水量变化特征分析及应用[J].气象科学37(4): 553-560.DOI: 10.3969/2016jms.0047.Fu Z K
null
Wan R Yu S J, et al, 2017.Analysis and application of ground-based GPS precipitable water vapor characteristics[J].Journal of The Meteorological Sciences37(4): 553-560.DOI: 10.3969/2016jms.0047 .
null
海云莎, 孙绩华, 陈新梅, 2011.2007-2010年云南GPS观测大气可降水量特征分析[J].云南地理环境研究23(2): 78-84.DOI: 10.3969/j.issn.1001-7852.2011.02.014.Hai Y S
null
Sun J H Chen X M2011.The analysis of GPS-retrieved PWV characteristic in Yunan from 2007-2010[J].Yunnan Geographic Environment Research23(2): 78-84.DOI: 10.3969/j.issn.1001-7852.2011.02.014 .
null
黄艳, 刘涛, 张云惠, 2012.2010年盛夏南疆西部一次区域性暴雨天气特征[J].干旱气象30(4): 615-622.DOI: 10.11755/j.issn.1006-7639(2012)-04-0615-08.Huang Y
null
Liu T Zhang Y H2012.Features of a regional rainstorm in midsummer of 2010 in western Xinjiang[J].Journal of Arid Meteorology30(4): 615-622.DOI: 10.11755/j.issn.1006-7639(2012)-04-0615-08 .
null
金炯, 董光荣, 申建友, 1994.新疆塔里木盆地的现代气候状况[J].干旱区资源与环境8(3): 12-21.
null
Jin J Dong G R Shen J Y1994.The contemporary climate of Tarim basin, Xinjiang [J].Journal of Arid Land Resources and Environment8(3): 12-21.
null
李成才, 毛节泰, 李建国, 等, 1999.全球定位系统遥感水汽总量[J].科学通报44(3): 333-336.
null
Li C C Mao J T Li J G, et al, 1999.Global Positioning system remote sensing of total water vapor [J].Scientific Bulletin44 (3): 333-336.
null
李光伟, 黄光瑞, 邢峰华, 等, 2022.海口地区GPS反演大气可降水量中加权平均温度模型构建及其应用[J].干旱气象40(6): 1081-1091.DOI: 10.11755/j.issn.1006-7639(2022)-06-1081.Li G W
null
Huang G R Xin F H, et al, 2022.Construction of weighted mean temperature model in retrieval of atmospheric precipitable water from GPS in Haikou and its application[J].Journal of Arid Meteorology40(6): 1081-1091.DOI: 10.11755/j.issn.1006-7639(2022)-06-1081
null
李光伟, 黄彦彬, 敖杰, 等, 2018.GPS探测与FY-2反演大气可降水量对比分析[J].气象44(8): 1082-1093.DOI: 10.7519/j.issn.1000-0526.2018.08.010.Li G W
null
Huang Y B Ao J, et al, 2018.Comparison of precipitable water retrieved by FY-2 satellite and GPS observations[J].Meteorological Monthly44(8): 1082-1093.DOI: 10.7519/j.issn.1000-0526.2018.08.010 .
null
李国平, 黄丁发, 2004.GPS遥感区域大气水汽总量研究回顾与展望[J].气象科技32(4): 201-205. DOI: 10.3969/j.issn.1671-6345.2004.04.001.Li G P
null
Huang D F2004.Reviews and prospects of researches on remote sensing of regional atmospheric water vapor using ground-based GPS[J].Meteorological Science and Technology32(4): 201-205.DOI: 10.3969/j.issn.1671-6345.2004.04.001 .
null
李国平, 黄丁发, 刘碧全, 2006.地基GPS遥感的成都地区夏季可降水量的日循环合成分析[J].水科学进展17(2): 160-163.DOI: 10.3321/j.issn: 1001-6791.2006.02.002.Li G P
null
Huang D F Liu B Q2006.Composite study of diurnal cycle of precipitable water vapor derived from ground-based GPS in Chengdu Plain during the warm season[J].Advances in Water Science17(2): 160-163.DOI: 10.3321/j.issn: 1001-6791.2006.02.002 .
null
李俊霞, 李培仁, 晋立军, 等, 2017.地基微波辐射计在遥感大气水汽特征及降水分析中的应用[J].干旱气象35(5): 767-775.DOI: 10.11755/j.issn.1006-7639(2017)-05-076.Li J X
null
Li P R Jin L J, et al, 2017.Remote sensing of precipitable water vapor features and application in precipitation analysis by using ground-based microwave radiometer[J].Journal of Arid Meteorology35(5): 767-775.DOI: 10.11755/j.issn.1006-7639(2017)-05-076 .
null
李立, 1994.新疆夏季降水的水汽特征[J].新疆气象17(3): 16-20.
null
Li L1994.Water vapor characteristics of summer precipitation in Xinjiang[J].Bimonthly of Xinjiang Meteorology17(3): 16-20.
null
梁宏, 刘晶淼, 李世奎, 2006.青藏高原及周边地区大气水汽资源分布和季节变化特征分析[J].自然资源学报, 4: 526-534.DOI: 10.3321/j.issn: 1000-3037.2006.04.004.Liang H
null
Liu J M Li S K2006.Analysis of precipitable water vapor source distribution and its seasonal variation characteristics over Tibetan plateau and its surroundings[J].Journal of Natural Resources, 4: 526-534.DOI: 10.3321/j.issn: 1000-3037.2006.04.004 .
null
刘晶, 杨莲梅, 2017.一次中亚低涡造成的天山北坡暴雨GPS大气水汽总量演变特征[J].气象43(6): 724-734.DOI: 10.7519/j.issn.1000-0526.2017.06.009.Liu J
null
Yang L M2017.Development features of GPS atmospheric precipitable water vapor in heavy rainfall caused by central Asia vortex on the north slope of Tianshan mountain[J].Meteorological Monthly43(6): 724-734.DOI: 10.7519/j.issn.1000-0526.2017.06.009 .
null
刘晶, 周雅蔓, 杨莲梅, 等 , 2019b.2016年伊犁河谷大气可降水量变化特征及其与降水的关系[J].干旱气象37(4): 565-576.DOI: 10.11755/j.issn.1006-7639(2019)-04-0565.Liu J , ZhouYM, YangLM, et al, 2019b.Temporal variation characteristics of precipitable water vapor based on GPS data and its relation with precipitation at Yili River Valley in 2016[J].Journal of Arid Meteorology, 37(4): 565-576.DOI: 10.11755/j.issn. 1006-7639(2019)-04-0565 .
null
刘晶, 周玉淑, 杨莲梅, 等 , 2019a.伊犁河谷一次极端强降水事件水汽特征分析[J].大气科学43(5): 959-974.DOI: 10.3878/j.issn.1006-9895.1901.18114.Liu J , ZhouY S, YangL M, et al, 2019a.A diagnostic study of water vapor during an extreme precipitation event in the Yili river valley[J].Chinese Journal of Atmospheric Sciences, 43(5): 959-974.DOI: 10.3878/j.issn.1006-9895.1901.18114 .
null
苗秋菊, 徐祥德, 张胜军, 2005.长江流域水汽收支与高原水汽输送分量“转换”特征[J].气象学报63(1): 93-99.DOI: 10.3321/j.issn: 0577-6619.2005.01.010.Miao Q J
null
Xu X D Zhang S J2005.Whole layer water vapor budget of Yangtze river valley and moisture flux components transform in the key areas of the plateau [J].Acta Meteorologica Sinica63(1): 93-99.DOI: 10.11676/qxxb2005.010 .
null
苗运玲, 李如琦, 卓世新, 2016.天山北坡东段GPS反演的大气可降水量变化特征及其与降水的关系[J].干旱气象34(6): 989-994.DOI: 10.11755/j.issn.1006-7639(2016)-06-0989.Miao Y L
null
Li R Q Zhuo S X2016.Temporal variation characteristics of precipitable water vapor based on GPS and their relation with precipitation in eastern section of the northern slope of Tianshan mountains [J].Journal of Arid Meteorology34(6): 989-994.DOI: 10.11755/j.issn.1006-7639(2016)-06-0989 .
null
努尔比亚·吐尼牙孜, 张超, 李泽巍, 等, 2019.南疆西部 2016年8月4次暴雨过程特征分析[J].干旱气象37(2): 301-311.DOI: 10.11755 /j.issn.1006-7639(2019)-02-0301.Nurbiye T
null
Zhang C Li Z W, et al, 2019.Characteristics of four rainstorm processes in the west of Southern Xinjiang in August 2016 [J].Journal of Arid Meteorology37(2): 301-311.DOI: 10.11755 /j.issn.1006-7639(2019)-02-0301 .
null
潘卫华, 余永江, 罗艳艳, 等, 2021.基于地基GPS大气可降水量的福建水汽资源时空分布特征分析[J].干旱气象39(4): 577-584.DOI: 10.11755/j.issn.1006-7639(2021)-04-0577.Pan W H
null
Yu Y J Luo Y Y, et al, 2021.Analysis of spatio-temporal distribution characteristics of atmospheric precipitable resources over Fujian based on ground-based GPS data[J].Journal of Arid Meteorology39(4): 577-584.DOI: 10.11755/j.issn.1006-7639(2021)-04-0577 .
null
申乐琳, 何金海, 周秀骥, 等, 2010.近50 年来中国夏季降水及水汽输送特征研究[J].气象学报68(6): 918-931.DOI: 10.11676/qxxb2010.087.Shen L L
null
He J H Zhou X J, et al, 2010.The regional variabilities of the summer rainfall in China and its relation with anomalous moisture transport during the recent 50 years[J].ACTA Meteorologica Sinica68(6): 918-931.DOI: 10.11676/qxxb2010.087 .
null
施雅风, 沈永平, 李栋梁, 等, 2003.中国西北气候由暖干向暖湿转型的特征和趋势探讨[J].第四纪研究23(2): 152-164.DOI: 10.3321/j.issn: 1001-7410.2003.02.005.Shi Y F
null
Shen Y P Li L D, et al, 2003.Discussion on the present climate change from warm-dry to warm-wet in northwest China[J].Quaternary Sciences23(2): 152-164.DOI: 10.3321/j.issn: 1001-7410.2003.02.005 .
null
石小龙, 尚伦宇, 尹远渊, 等, 2014.大连地区GPS反演大气可降水量的变化特征[J].高原气象33(6): 1648-1653.DOI: 10.7522/j.issn.1000-0534.2014.00080.Shi X L
null
Shang L Y Yin Y Y, et al, 2014.Variation characteristics of precipitable water vapor inversed by GPS in Dalian[J].Plateau Meteorology33(6): 1648-1653.DOI: 10.7522/j.issn.1000-0534.2014.00080 .
null
史玉光, 2014.新疆降水与水汽的时空分布及变化研究[M].北京: 气象出版社, 79-81.
null
Shi Y G2014.The space time distribution of precipitation and water vapor and change in Xinjiang[M].Beijing: China Meteorological Press, 79-81.
null
万蓉, 郑国光, 2008.地基GPS在暴雨预报中的应用进展[J].气象科学28(6): 697-702.DOI: 10.3969/j.issn.1009-0827.2008.06.019.Wan R
null
Zheng G G2008.Advances in the application of ground based GPS data to rainstorm forecast and nowcasting [J].Journal of the Meteorological Sciences28(6): 697-702.DOI: 10.3969/j.issn.1009-0827.2008.06.019 .
null
王灏, 胡泽勇, 杨耀先, 等, 2023.近60 年青藏高原季风期降水的南北变化特征及机理研究[J].高原气象42(4): 848-857.DOI: 10.7522/j.issn.1000-0534.2023.00034.Wang H
null
Hu Z Y Yang Y X, et al, 2023.The changing features and the mechanism of the precipitation in southern-northern Qinghai-Xizang Plateau during monsoon period in last 60 Years[J].Plateau Meteorology42(4): 848-857.DOI: 10.7522/j.issn.1000-0534.2023.00034 .
null
王娜, 顾伟宗, 邱粲, 等, 2021.山东夏季空中水汽分布和水汽输送特征[J].高原气象40(1): 159-168.DOI: 10.7522/j.issn.1000-0534.2019.00119.Wang N
null
Gu W Z Qiu C, et al, 2021.Characteristics of atmospheric water vapor distribution and transport during summer over Shandong Province[J].Plateau Meteorology40(1): 159-168.DOI: 10.7522/j.issn.1000-0534.2019.00119 .
null
王天竺, 赵勇, 2021.夏季青藏高原和热带印度洋热力异常对塔里木盆地夏季降水的影响[J].气候与环境研究26(3): 275-288.DOI: 10.3878/j.issn.1006-9585.2021.20092.Wang T Z
null
Zhao Y2021.Influences of summer thermal anomalies over the Tibetan Plateau and the Tropical Indian Ocean on summer rainfall in the Tarim Basin[J].Climatic and Environmental Research26(3): 275-288.DOI: 10.3878/j.issn.1006-9585.2021.20092 .
null
肖开提·多莱特, 2005.新疆降水量级标准的划分[J].新疆气象28(3): 7-8.
null
Xiaokaiti D2005.Formulation of Precipitation Intensity Standard of Xinjiang[J].Bimonthly of Xinjiang Meteorology28(3): 7-8.
null
杨莲梅, 王世杰, 史玉光, 等, 2012.乌鲁木齐夏季强降水过程GPS-PWV的演变特征[J].高原气象31(5): 1348-1355.DOI: 10.7522/j.issn.1000-0534(2012)05-1348-08.Yang L M
null
Wang S J Shi Y G, et al, 2012.Evolution feature of precipitable water vapor derived from ground-based GPS during summer heavy precipitation in Urumqi[J].Plateau Meteorology31(5): 1348-1355.DOI: 10.7522/j.issn.1000-0534(2012)05-1348-08 .
null
杨莲梅, 张广兴, 崔彩霞, 2006.塔里木盆地气候变化的季节差异[J].气候变化研究进展2(4): 168-172.DOI: 10.3969/j.issn.1673-1719.2006.04.004.Yang L M
null
Zhang G X Cui C X2006.Seasonal difference of climate change in Tarim Basin, Xinjiang [J].Climate Change Research2(4): 168-172.DOI: 10.3969/j.issn.1673-1719.2006.04.004 .
null
杨青, 刘晓阳, 崔彩霞, 等, 2010.塔里木盆地水汽含量的计算与特征分析[J].地理学报65(7): 853-862.
null
Yang Q Liu X Y Cui C X, et al, 2010.The computation and characteristics analysis of water vapor contents in the Tarim Basin, China[J].Acta Geographica Sinica65(7): 853-862.
null
姚俊强, 杨青, 陈亚宁, 等, 2013.西北干旱区气候变化及其对生态环境影响[J].生态学杂志32(5): 1283-1291.DOI: 10.13292/j.1000-4890.2013.0221.Yao J Q
null
Yang Q Chen Y N, et al, 2013.Climate change in arid areas of Northwest China in past 50 years and its effects on the local ecological environment [J].Chinese Journal of Ecology32(5): 1283-1291.DOI: 10.13292/j.1000-4890.2013.0221 .
null
姚俊强, 杨青, 黄俊利, 等, 2012.天山山区及周边地区大气水汽含量的计算与特征分析[J].干旱区研究29(4): 567-573.DOI: 10.13866/j.azr.2012.04.018.Yao J Q
null
Yang Q Huang J L, et al, 2012.Computation and analysis of water vapor content in the Tianshan mountains and peripheral regions, China [J].Arid Zone Research29(4): 567-573.DOI: 10.13866/j.azr.2012.04.018 .
null
于晓晶, 唐永兰, 于志翔, 等, 2019.基于地基GPS资料的天山山区夏季大气可降水量特征[J].气象45(12): 1691-1699.DOI: 10.7519/j.issn.1000-0526.2019.12.006.Yu X J
null
Tang Y L Yu Z X, et al, 2019.Characteristics of precipitable water vapor over the Tianshan mountains based on GPS observations [J].Meteorological Monthly45(12): 1691-1699.DOI: 10.7519/j.issn.1000-0526.2019.12.006 .
null
张端禹, 王明欢, 陈波, 2010.2008年8月末湖北连续大暴雨的水汽输送特征[J].气象36(2): 48-53.DOI: 10.7519/j.issn.1000-0526.2010.2.007.Zhang D Y , WangM H, ChenB, 2010.Features of moisture transportation in a continuous torrential rain in Hubei province at the end of August 2008[J].Meteorological Monthly, 36(2): 48-53.DOI: 10.7519/j.issn.1000-0526. 2010.2.007 .
null
张家宝, 邓子风, 1987.新疆降水概论[M].北京: 气象出版社.Zhang J B, Deng Z F, 1987.Introduction to precipitation in Xinjiang [M].Beijing: China Meteorological Press.
null
赵克明, 黄艳, 于碧馨, 2017.2013年南疆西部暴雨天气的水汽特征[J].气象科技45(1): 121-129.DOI: 10.19517/j.1671-6345.20160026.Zhao K M
null
Huang Y Yu B X2017.Water vapor characteristics of rainstorm weather processes over Western South Xingjiang in 2013 [J].Meteorological Science and Technology45(1): 121-129.DOI: 10.19517/j.1671-6345.20160026 .
null
赵玲, 梁宏, 崔彩霞, 2006.乌鲁木齐地基GPS数据的解算和应用[J].干旱区研究23(4): 654-65.DOI: 10.13866/j.azr.2006.04.025.Zhao L
null
Liang H Cui C X2006.Solution and application of the ground-based GPS data in Urumqi, Xinjiang[J].Arid Zone Research23(4): 654-657.DOI: 10.13866/j.azr.2006.04.025 .
Outlines

/