Large-Eddy Simulation of Dry and Moist Atmospheric Boundary Layers and Analysis of the Model Convergence
Received date: 2023-11-24
Revised date: 2024-03-15
Online published: 2024-03-15
By using the large eddy simulation (LES) version of the Weather Research and Forecasting (WRF) model, vertical structure and the feature of turbulent transportation of shallow-convective-cloud-topped atmospheric convective boundary layer was simulated in addition to the idealized dry convective boundary layer on oceanic surface.Numerical convergence of LES model was analyzed with the model results in different resolutions.The results showed that the dry convective boundary layer was vigorous.Approximately 1.15 km of the planetary boundary layer height was simulated with the LES in different resolutions.Vertical uniform structure of the averaged potential temperature (θ), mixing ratio of water vapor ( ) and horizontal wind (u and v) were shown in the idealized dry convective boundary layer but with large vertical gradients in the near surface layer and the top of the boundary layer.Higher resolution model resolved more detailed structure of convective bubbles within the dry convective boundary layer, larger variance of potential temperature in the entrainment layer, vertical uniform distribution of the averaged quantities within the simulated mixed layer extending more closing to the surface, and the errors in LES model under coarse resolution were mainly concentrated in the lower boundary layer and near the inversion layer.The higher resolution LES model showed larger resolved sensible heat flux while the total flux remained.In the case of shallow-convective-cloud-topped boundary layer, obvious different boundary layer structure was displayed in comparison with that of the dry convective boundary layer.Conditionally unstable layer existed over the mixing layer, and mixing layer height dropped.Vertical profiles of averaged θ, , u and v showed similar structure in the mixing layer as that in the convective boundary layer.The averaged meteorological quantities in the lower mixing layer were uniformly distributed in vertical direction.In the cloudy layer, however, positive heat flux and vertical turbulent kinetic energy appeared.Negative heat flux was observed from the top of mixing layer to the lower cloudy layer, which reflected the weak inverse temperature and entrainment at top of mixing layer.Lower-resolution model simulated more deviations of the top of temperature inversion, and mean wind velocity and fluxes near surface.The large eddy simulation model tended to converge at 40 m resolution in the vigorously developing dry convective boundary layer case while it converged at 30 m resolution in the shallow-convective-cloud-topped boundary layer.The atmospheric boundary layer with lower mixing layer height needs to be simulated using a higher resolution LES model.
Yixin ZHANG , Xindong PENG . Large-Eddy Simulation of Dry and Moist Atmospheric Boundary Layers and Analysis of the Model Convergence[J]. Plateau Meteorology, 2024 , 43(6) : 1559 -1572 . DOI: 10.7522/j.issn.1000-0534.2024.00039
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 曹帮军, 吕世华, 张宇, 等, 2020.绿洲灌溉对垂直湍流热通量影响的大涡模拟研究[J].大气科学, 44(6): 1188-1202.DOI: 10.3878/j.issn.1006-9895.1912.19163.Cao B J , |
null | |
null | 程志刚, 李炬, 张鑫宇, 等, 2020.基于三台测风激光雷达的大气湍流和三维风场研究[J].气象学报, 78(6): 1021-1036.DOI: 10.11676/qxxb2020.070.Cheng Z G , |
null | |
null | 伏薇, 李茂善, 阴蜀城, 等, 2022.西风南支与高原季风环流场下青藏高原大气边界层结构研究[J].高原气象, 41(1): 190-203.DOI: 10.7522/j.issn.1000-0534.2021.00016.Fu W , |
null | |
null | 黄翊, 彭新东, 2017.边界层湍流参数化改进对雾的模拟影响[J].大气科学, 41 (3): 533-543.DOI: 10.3878/j.issn.1006-9895.1606.16152.Huang Y , |
null | |
null | 李雪洮, 梁捷宁, 郭琪, 等, 2020.利用大涡模式模拟黄土高原地区对流边界层特征[J].高原气象, 39(3): 523-531.DOI: 10.7522/j.issn.1000-0534.2019.00050.Li X T , |
null | |
null | 李叶晴, 师春香, 沈润平, 等, 2023.基于WRF-LES的门头沟地区近地面风场模拟与边界层方案敏感性研究[J].高原气象, 42(3): 758-770.DOI: 10.7522/j.issn.1000-0534.2022.00084.Li Y Q , |
null | |
null | 卢绪兰, 彭新东, 2021.尺度自适应大气边界层参数化改进及其对一次海雾的数值模拟研究[J].气象学报, 79(1): 119-131.DOI: 10.11676/qxxb2021.003.Lu X L , |
null | |
null | 苗世光, 蒋维楣, 李昕, 等, 2001.对流边界层大涡模式的改进及对夹卷速度的研究[J].大气科学, 25(1): 25-37.DOI: 10.3878/j.issn.1006-9895.2001.01.03.Miao S G , |
null | |
null | |
null | |
null | 王冠添, 胡泽勇, 孙根厚, 等, 2023.那曲地区不同季节陆面过程与大气边界层演变耦合关系的对比分析[J].高原气象, 42(1): 197-209.DOI: 10.7522/j.issn.1000-0534.2022.00011.Wang G T , |
null | |
null | 王蓉, 张强, 岳平, 等, 2020.大气边界层数值模拟研究与未来展望[J].地球科学进展, 35(4): 331.DOI: 10.11867/j.issn.1001-8166.2020.036.Wang R , |
null | |
null | 熊洁, 李俊, 王明欢, 2021.随机参数扰动在一次山地暴雨集合预报中的对比研究[J].气象, 47(8): 953-965.DOI: 10.7519/j.issn.1000-0526.2021.08.004.Xiong J , |
null | |
null | 杨玉华, 刘长海, |
null | |
null | 张璐, 黄倩, 张宏昇, 等, 2021.干湿地表的湍流特征及其对深对流影响的大涡模拟[J].气象学报, 79(4): 659-673.DOI: 10.11676/qxxb2021.037.Zhang L , |
null | |
null | 张美根, 胡非, 邹捍, 等, 2008.大气边界层物理与大气环境过程研究进展[J].大气科学, 32(4): 923-934. |
null | |
null | 张强, 王蓉, 岳平, 等, 2017.复杂条件陆-气相互作用研究领域有关科学问题探讨[J].气象学报, 75(1): 39-56.DOI: 10.11676/qxxb2017.003.Zhang Q , |
null | |
null | 张强, 王胜, 2008.西北干旱区夏季大气边界层结构及其陆面过程特征[J].气象学报, 66(4): 599-608.DOI: 10.3321/j.issn: 0577-6619.2008.04.013.Zhang Q , |
null | |
null | 张敏, 梁捷宁, 张志达, 等, 2022.利用大涡模拟分析地表加热和动力作用对边界层结构的影响[J].高原气象, 41(5): 1232-1241.DOI: 10.7522/j.issn.1000-0534.2021.00046.Zhang M , |
null | |
null | 张珊, 王宗敏, 黄刚, 等, 2023.基于WRF-LES的崇礼复杂地形局地风场模拟研究[J].高原气象, 42(1): 197-209.DOI: 10.7522/j.issn.1000-0534.2022.00011.Zhang S , |
null |
/
〈 |
|
〉 |