Study on Water Level Evolution of Qinghai Lake and Its Influencing Factors
Received date: 2023-07-31
Revised date: 2023-11-08
Online published: 2023-11-08
Qinghai Lake is not only the largest lake in China but also an important part of the national ecological security strategy.Under the background of global warming, the water level of Qinghai Lake changes rapidly, which has great effects on the surrounding traffic facilities, residents' safety and the development of animal husbandry, etc.Therefore, it is necessary to study the water level evolution characteristics of Qinghai Lake and its water balance under climate change.Based on the hydrological data of Buha River hydrology station and Xiashe hydrology station, meteorological data of Gangcha meteorological station and CMFD, and water balance equation, this paper first analyzes the inter-annual and intra-year water level evolution characteristics of Qinghai Lake from 1956 to 2020, and the water balance components, such as runoff into the lake ( ), precipitation (P) and evaporation (E).The second reveals that the changes in water level values calculated in the same months are synchronized with the changes in , P, and E.Finally, the ridge regression method is employed to quantitatively calculate the contribution rates of , P, and E to the water level change of Qinghai Lake based on calculations made for December.The results show that the annual average water level declined at a rate of 0.8 m·(10a)-1 from 1956 to 2004, of which the main reason for the decrease between 1979 and 2004 was that E exceeded the sum of P and .However, from 2004 to 2020, the water level increased at a rate of 1.9 m·(10a)-1, of which the main reason for the increase between 2004 and 2018 was the increase of P and .Qinghai Lake exhibits evident intra-annual variations, with the water level starting to rise in May and reaching its peak in September, which aligns with the monthly variations of , P, and E.Furthermore, the impact of the current year's P, , and E changes on the annual water level change for the same months of September to December is greater than that of the previous year.Specifically, the contributions of the current year's P, , and E changes to the water level change calculated based on December data are 10%, 70%, and 20%, respectively.
Key words: Qinghai Lake; water level evolution; runoff; precipitation; evaporation; regression analysis
Mengxiao WANG , Lijuan WEN . Study on Water Level Evolution of Qinghai Lake and Its Influencing Factors[J]. Plateau Meteorology, 2024 , 43(3) : 561 -569 . DOI: 10.7522/j.issn.1000-0534.2023.00092
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 白文蓉, 余迪, 刘彩红, 等, 2019.气候变暖背景下青海湖水位及面积变化趋势及成因分析[J].青海科技, 26(3): 72-78. |
null | |
null | 代云川, 王秀磊, 马国青, 等, 2018.青海湖国家级自然保护区水鸟群落多样性特征[J].林业资源管理(2): 74-80.DOI: 10.13466/j.cnki.lyzygl.2018.02.013.Dai Y C , |
null | |
null | 杜嘉妮, 李其江, 刘希胜, 等, 2020.青海湖1956-2017年水文变化特征分析[J].水生态学杂志, 41(4): 27-33.DOI: 10.15928/j.1674-3075.2020.04.004.Du J N , |
null | |
null | 郭丰杰, 李婷, 季民, 2022.2000-2019年青海湖面积时序特征分析及预测[J].科学技术与工程, 22(2): 740-748. |
null | |
null | 韩艳莉, 于德永, 陈克龙, 等, 2022.2000-2018年青海湖流域气温和降水量变化趋势空间分布特征[J].干旱区地理, 45(5): 999-1009.DOI: 10.12118/j.issn.1000-6060.Han Y L , |
null | |
null | 江波, 张路, 欧阳志云, 2015.青海湖湿地生态系统服务价值评估[J].应用生态学报, 26(10): 3137-3144.DOI: 10.13287/j.1001-9332.20150921.019.Jiang B , |
null | |
null | 金章东, 张飞, 王红丽, 等, 2013.2005年以来青海湖水位持续回升的原因分析[J].地球环境学报, 4(3): 1355-1362.DOI: 10.7515/JEE201303008.Jin Z D , |
null | |
null | 李林, 朱西德, 王振宇, 等, 2005.近42 a来青海湖水位变化的影响因子及其趋势预测[J].中国沙漠, 25(5): 689-696. |
null | |
null | 李林, 时兴合, 申红艳, 等, 2011.1960-2009年青海湖水位波动的气候成因探讨及其未来趋势预测[J].自然资源学报, 26(9): 1566-1574. |
null | |
null | 李林, 申红艳, 刘彩红, 等, 2020.青海湖水位波动对气候暖湿化情景的响应及其机理研究[J].气候变化影响, 16(5): 600-608.DOI: 10.12006/j.issn.1673-1719.2019.243.Li L , |
null | |
null | 龙笛, 李雪莹, 李兴东, 等, 2022.遥感反演2000-2020年青藏高原水储量变化及其驱动机制[J].水科学进展, 33(3): 375-389.DOI: 10.14042/j.cnki.32.1309.2022.03.003.Long D , |
null | |
null | 闾利, 张廷斌, 易桂花, 等, 2019.2000年以来青藏高原湖泊面积变化与气候要素的响应关系[J].湖泊科学, 31(2): 573-589.DOI: 10.18307/2019.0225.Lv L , |
null | |
null | 孙永寿, 李其江, 刘弢, 等, 2021.青海湖1956~2019年水位变化原因及水量平衡分析研究[J].水文, 41(5): 91-96.DOI: 10.19797/j.cnki.1000-0852.20200215.Sun Y S , |
null | |
null | 王威, 赵晓军, 周华坤, 2022.近十年青海湖水面面积和水位变化规律及其成因[J].青海科技, 29(4): 59-62. |
null | |
null | 王欣语, 高冰, 2021.青海湖水量平衡变化及其对湖水位的影响研究[J].水力发电学报, 40(10): 60-70.DOI: 10.11660/slfdxb.20211006.Wang X Y , |
null | |
null | 伊万娟, 李小雁, 崔步礼, 等, 2010.青海湖流域气候变化及其对湖水位的影响[J].干旱气象, 28(4): 375-383. |
null | |
null | 杨楠, 2004.岭回归分析在解决多重共线性问题中的独特作用[J].理论新探(3): 14-15.DOI: 10.13546/j.cnki.tjyjc.2004.03. 007.Yang N , 2004.The unique role of ridge regression analysis in solving multicollinearity problems[J].New Theoretical Exploration (3): 14-15.DOI: 10.13546/j.cnki.tjyjc.2004.03.007 . |
null | 杨显明, 张鸽, 加壮壮, 等, 2021.全球气候变化背景下青海湖岸线变化及其对社会经济影响[J].高原科学研究, 5(4): 1-10. |
null | |
null | 袁烽迪, 张溪, 魏永强, 2018.青藏高原生态屏障区生态环境脆弱性评价研究[J].地理空间信息, 16(4): 67-69.DOI: 10.3969/j.issn.1672-4623.2018.04.022.Yuan F D , |
null | |
null | 张洪源, 吴艳红, 刘衍君, 等, 2018.近20 年青海湖水量变化遥感分析[J].地理科学进展, 37(6): 823-832.DOI: 10.18306/dlkxjz.2018.06.009.Zhang H Y , |
null | |
null | 张国庆, 2021.青海湖水文气象数据(1956-2020)[DB/OL].国家青藏高原科学数据中心, [2024-03-28].2021.Hydrometeorological data of Qinghai Lake (1956-2020)[DB/OL].National Tibetan Plateau Scientific Data Center, [2024-03-28]. |
null | 周丹, 张娟, 罗静, 等, 2021.青海湖水位变化成因分析及其未来趋势预估研究[J].生态环境学报, 30(7): 1482-1491.DOI: 10.16258/j.cnki.1674-5906.2021.07.017.Zhou D , |
null |
/
〈 |
|
〉 |