Spatial and Temporal Characteristics of Aerosol Direct Radiative Forcing during Spring in the Indo-china Peninsula
Received date: 2022-12-30
Revised date: 2023-05-16
Online published: 2023-05-16
Frequent biomass-burning activities occur in the Indo-China Peninsula in spring, and the aerosol generated will affect the atmospheric radiation budget of southwest China through the atmospheric circulation.Exploring its influence on the atmospheric heating rate can provide a basis for studying its influence on weather and climate.Based on the MERRA-2 reanalysis data of hourly aerosol and radiation flux under clear sky, their temporal and spatial characteristics were analyzed first.Secondly, using statistical methods such as EOF and synthetic analysis, the temporal and spatial evolution characteristics of aerosol optical thickness (AOD) and surface aerosol direct radiative forcing (ADRF) over the Indo-China Peninsula and their relationship with atmospheric shortwave heating rate were discussed.The results showed that: (1) During the biomass burning season from March to April, there was an extreme value of AOD in the Indo-China Peninsula and Yunnan Province.The time series trend also showed a high consistency.The central value of AOD in Laos and northern Vietnam was more than 1, and the AOD in Yunnan Province gradually increased from north to south due to its influence.(2) The high-value center of biomass combustion AOD in the Indo-China Peninsula from March to April was consistent with that of total AOD, indicating that it was mainly affected by biomass combustion aerosol at this time.The horizontal flux divergence of biomass burning aerosol is as high as 28 kg·m-1·d-1 in northern Laos, which can be transported northeast to China.(3) The spatial and temporal distribution of surface ADRF and AOD showed a high consistency.The high-value center of surface ADRF also existed in the northern part of Laos and Vietnam in March and April, and its value could reach -36 W·m-2.In the spatial distribution of the first mode of surface ADRF in EOF, the northeast corner of India bordering in Tibet of China, Laos, Vietnam and Thailand are all positive phase regions, with maximum values appearing from March to April.The extreme values decreased in 2017 and 2018 and increased again in 2019.The temporal variation trend of surface ADRF in Yunnan Province is consistent with that in the Indo-China Peninsula.(4) The statistical relationship between the negative surface ADRF and the atmospheric shortwave heating rate is as follows: The more the net radiant flux of the surface decreases, the greater the heating caused by the absorption of shortwave radiation by the lower atmosphere, indicating that the more the shortwave radiation flux trapped by the aerosol in the atmosphere, especially at 700 hPa in March and April.
Shuxuan HE , Wenxuan FAN . Spatial and Temporal Characteristics of Aerosol Direct Radiative Forcing during Spring in the Indo-china Peninsula[J]. Plateau Meteorology, 2024 , 43(4) : 1039 -1051 . DOI: 10.7522/j.issn.1000-0534.2023.00045
null | |
null | |
null | |
null | |
null | IPCC, 2021.Summary for Policymakers.In: Climate Change 2021: The Physical Science Basis.Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P.Zhai, A.Pirani, S.L.Connors, C.Péan, S.Berger, N.Caud, Y.Chen, L.Goldfarb, M.I.Gomis, M.Huang, K.Leitzell, E.Lonnoy, J.B.R.Matthews, T.K.Maycock, T.Waterfield, O.Yelek?i, R.Yu and B.Zhou (eds.)].Cambridge University Press.In Press. |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 陈林, 石广玉, 王标, 等, 2010.基于卫星观测资料的气溶胶直接辐射强迫研究[C]//北京: 第27届中国气象学会年会应对气候变化分会场——人类发展的永恒主题论文集, 10-25. |
null | |
null | 邓丛蕊, 2011.中国大气气溶胶中生物质燃烧的源追踪及灰霾的形成机制[D].上海: 复旦大学, 1-140. |
null | |
null | 黄建平, 刘玉芝, 王天河, 等, 2021.青藏高原及周边地区气溶胶、 云和水汽收支研究进展[J].高原气象, 40(6): 1225-1240.DOI: 10.7522/j.issn.1000-0534.2021.zk012.Huang J P , |
null | |
null | 黄嘉佑, 1990.气象统计分析与预报方法[M].气象出版社, 182-188. |
null | |
null | 黄文彦, 沈新勇, 王勇, 等, 2015.亚洲地区碳气溶胶的时空特征及其直接气候效应[J].大气科学学报, 38(4): 448-457. |
null | |
null | |
null | 蔺惠娟, 李沐阳, 庄炳亮, 等, 2023.中国大陆和印度黑碳气溶胶对东亚冬季气候的影响研究[J].大气科学, 47(4): 1113-1130. |
null | |
null | 罗凯, 盛立芳, 2012.东亚气溶胶光学厚度时空变化特征及其对气候可能的影响[J].中国海洋大学学报: 自然科学版, 42(11): 8-18. |
null | Luo, |
null | 罗燕, 吴涧, 王卫国, 2006.利用MODIS-GOCART气溶胶资料研究中国东部地区气溶胶直接辐射强迫[J].热带气象学报, 22(6): 638-647. |
null | |
null | 罗云峰, 周秀骥, 李维亮, 1998.大气气溶胶辐射强迫及气候效应的研究现状[J].地球科学进展, 13(6): 572-581. |
null | |
null | 倪敏, 郑军, 马嫣, 等, 2016.气溶胶的辐射强迫作用研究进展[J].环境科学与技术 (10): 73-78.Ni M, Zheng J, Ma Y, et al, 2016.Research progress in radiative forcing of aerosol[J].Environmental Science & Technology(10): 73-78. |
null | 石广玉, 王标, 张华, 等, 2008.大气气溶胶的辐射与气候效应[J].大气科学, 32(4): 826-840. |
null | |
null | 宿兴涛, 王汉杰, 周林, 2010.中国有机碳气溶胶时空分布与辐射强迫的模拟研究[J].热带气象报, 26(6): 765-772. |
null | |
null | 宿兴涛, 王汉杰, 宋帅, 等, 2011.近10 年东亚沙尘气溶胶辐射强迫与温度响应[J].高原气象, 30(5): 1300-1307. |
null | |
null | 吴涧, 符淙斌, 2005.近五年来东亚春季黑炭气溶胶分布输送和辐射效应的模拟研究[J].大气科学, 29(1): 111-119. |
null | |
null | 王莹, 沈新勇, 王勇, 等, 2012.东亚地区人为气溶胶直接辐射强迫及其气候效应的数值模拟[J].气象科学, 32(5): 515-525. |
null | |
null | 徐小红, 余兴, 朱延年, 等, 2021.气溶胶对中国中纬度夏季低层风速的影响[J].高原气象, 40(2): 367-373.DOI: 10.7522/j.issn.1000-0534.2020.00037.Xu X H , |
null | |
null | 衣娜娜, 张镭, 刘卫平, 等, 2017.西北地区气溶胶光学特性及辐射影响[J].大气科学, 41(2): 409-420. |
null | |
null | 张华, 王志立, 2009.黑碳气溶胶气候效应的研究进展[J].气候变化研究进展(6): 311-317. |
null | |
null | 周茹, 朱君, 2020.东南亚生物质燃烧输送影响我国西南气溶胶辐射特性研究[J].中国环境科学, 40(4): 1429-1436. |
null | |
null | 朱思虹, 张华, 卫晓东, 等, 2018.不同污染条件下气溶胶对短波辐射通量影响的模拟研究[J].气象学报, 76(5): 790-802. |
null |
/
〈 |
|
〉 |