Numerical Simulation Study of Moist Baroclinic Instability Mechanism during a Yellow River Cyclogenesis Event
Received date: 2023-02-05
Revised date: 2023-09-28
Online published: 2024-06-03
As the main mechanism of extratropical cyclogenesis, moist baroclinic instability plays a central role in the study of cyclone thermodynamics, which can be further divided into four categories: dry baroclinic instability, moist instability, diabatic Rossby wave and Type C cyclogenesis (tropopause intrusion).The '7·20' heavy rainstorm was caused by the eastward movement of a Yellow River cyclone into North China after its rapid formation on July 18, 2016.Compared with the mature stage of the cyclone, the mechanism of the initial stage is still unclear.This article uses ERA5 reanalysis data and WRF model to study the moist baroclinic instability of the cyclogenesis event numerically.The results show that mid-lower troposphere presented diabatic Rossby wave pattern, that is, the eastward movement of the system was mainly driven by the cycle of vertical motion and diabatic effect.The vertical motion on which the wave relied was more provided by vorticity advection.The PV sink and the ageostrophic wind in the upper layer delayed the eastward movement of the tropopause intrusion PV, maintaining the phase difference between upper and lower layers.Finally, a PV column formed throughout the troposphere in front of dry intrusion.Using piecewise PV inversion, several sensitivity runs are designed to remove unbalanced circulation, tropopause dry intrusion PV and lower-level diabatic-produced PV from the initial field, respectively.Combined with the analysis of generalized omega equation, it shows that the baroclinic wave in this process must be coupled with the diabatic process with the help of sufficient water vapor to develop strongly.The cyclogenesis was suppressed when the latent heat was turned off.Dry baroclinic instability cannot explain this process.The removal of initial unbalanced field did not affect the baroclinic instability but will delay development of the system.Limited by humidity and mesoscale circulation structure, the active area of lower-level unbalanced flow was controlled by dry baroclinic dynamics.In this case, the gradient of was too small to organize eastward diabatic Rossby wave by relying only on the initial lower-level PV.Nor can strong lower-level diabatic heating generate as in Type C cyclogenesis by tropopause intrusion.For this Yellow River cyclogenesis case, it is required the initial lower-level PV anomaly to be strong enough to counteract the suppression of the cooling subsidence in front of dry intrusion; on the other hand, it is also required that the dry intrusion, in an appropriate initial phase difference with the lower system, strengthened the ascending motion east of the low-level PV in form of vorticity advection through vertical penetration, so as to promote the eastward momentum of diabatic Rossby wave to enter north China with more saturated environment.None of dry baroclinic instability, diabatic Rossby wave and Type C cyclogenesis could independently explain this cyclogenesis event, which was an initial optimal perturbation growth under the combined effect of diabatic Rossby wave and tropopause dry intrusion.
Chiqin LI , Rong LU , Wancheng ZHANG , Xiaoxia JIN , Shouting GAO . Numerical Simulation Study of Moist Baroclinic Instability Mechanism during a Yellow River Cyclogenesis Event[J]. Plateau Meteorology, 2024 , 43(3) : 635 -654 . DOI: 10.7522/j.issn.1000-0534.2023.00080
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 白云飞, 赵宇, 李树岭, 等, 2023.造成东北地区暴雪过程的温带气旋暖输送带特征研究[J].高原气象, 42(5): 1271-1284.DOI: 10.7522/j.issn.1000-0534.2022.00108.Bai Y F , |
null | |
null | 邓承之, 赵宇, 孔凡铀, 等, 2021.“6·30”川渝特大暴雨过程中西南低涡发展机制模拟分析[J].高原气象, 40(1): 85-97.DOI: 10.7522/j.issn.1000-0534.2019. 00106.Deng C Z , ZhaoY, KongF Y, et al, 2021.A numerical simulation study of the southwest vortex mechanism during the “6.30” heavy rain event in Sichuan and Chongqing[J].Plateau Meteorology, 40(1): 85-97.DOI: 10.7522/j.issn.1000-0534.2019. 00106 . |
null | 高守亭, 周菲凡, 2006.基于螺旋度的中尺度平衡方程及非平衡流诊断方法[J].大气科学, 30(5): 854-862. |
null | |
null | 高守亭, 周玉淑, 张万诚, 等, 2023.垂直运动研究进展及新型垂直运动方程[J].大气科学, 47(4): 1039-1049.DOI: 10.3878/j.issn.1006-9895.2109.21140.Gao S T , |
null | |
null | 葛晶晶, 钟玮, 陆汉城, 2011.致洪暴雨过程中尺度涡旋的涡散作用及准平衡流诊断分析[J].气象学报, 69(2): 277-288. |
null | |
null | 郭大梅, 潘留杰, 李明娟, 等, 2022.关中北部一次暴雨水汽条件及不稳定分析[J].高原气象, 41(6): 1481-1491.DOI: 10.7522/j.issn.1000-0534.2021.00090.Guo D M , |
null | |
null | 郭云云, 康岚, 邓莲堂, 等, 2022.不同定义的位涡对四川盆地一次极端暴雨的诊断[J].高原气象, 41(5): 1242-1250.DOI: 10.7522/j.issn.1000-0534.2021.00051.Guo Y Y , |
null | |
null | 雷蕾, 孙继松, 何娜, 等, 2017.“7.20”华北特大暴雨过程中低涡发展演变机制研究[J].气象学报, 75(5): 685-699.DOI: 10.11676/qxxb2017.054.Lei L , |
null | |
null | 林璇, 赵磊, 李得勤, 等, 2020.华北“7·20”特大暴雨多尺度特征分析[J].气象与环境学报, 36(3): 1-9.DOI: 10.3969/j.issn.1673-503X.2020.03.001.Lin X , |
null | |
null | 陆婷婷, 崔晓鹏, 2022.2016年北京“7·20”特大暴雨降水物理过程模拟诊断研究[J].大气科学, 46(2): 359-379.DOI: 10.3878/j.issn.1006-9895.2104.20232.Lu T T , |
null | |
null | 潘旸, 沈艳, 宇婧婧, 等, 2012.基于最优插值方法分析的中国区域地面观测与卫星反演逐时降水融合试验[J].气象学报, 70(6): 1381-1389.DOI: 10.11676/qxxb2012.116.Pan Y , |
null | |
null | 庆涛, 沈新勇, 黄文彦, 等, 2015.2011年梅汛期一次暴雨过程的对流涡度矢量方程诊断分析[J].高原气象, 34(2): 401-412.DOI: 10.7522/j.issn.1000-0534.2013.00204.Qin T , |
null | |
null | 陶祖钰, 周小刚, 郑永光, 2012.从涡度、 位涡、 到平流层干侵入——位涡问题的缘起、 应用及其歧途[J].气象, 38(1): 28-40.DOI: 10.7519/j.issn.1000-0526.2012.1.003.Tao Z Y , |
null | |
null | 沈新勇, 沙莎, 李小凡, 2018. 一次梅雨锋暴雨过程中多尺度能量相互作用的研究Ⅰ.理论分析[J].大气科学, 42(5): 1109-1118.DOI: 10.3878/j.issn.1006-9895.1710.17195.Shen X Y , |
null | |
null | 肖玉华, 郁淑华, 高文良, 等, 2018.一例伴随西南涡的入海高原涡持续活动成因分析[J].高原气象, 37(6): 1616-1627.DOI: 10.7522/j.issn.1000-0534.2018.00043.Xiao Y H , |
null | |
null | 肖贻青, 娄盼星, 李明娟, 等, 2023.西北涡与西南涡共同作用引发秦巴区域大暴雨的成因分析[J].高原气象, 42(1): 98-107.DOI: 10.7522/j.issn.1000-0534.2022.00013.Xiao Y Q , |
null | |
null | 谢作威, 布和朝鲁, 诸葛安然, 等, 2022.“21·7”河南暴雨暖湿季风输送带加强及关键天气流型的准地转位涡反演[J].大气科学, 46(5): 1147-1166.DOI: 10.3878/j.issn.1006-9895.2205.22039.Xie Z W , BuehC L, ZhugeA R, et al, 2022.An intensification of the warm and moist conveyor belt of the Asian summer monsoon in the “21·7” Henan rainstorm and its key circulation from the quasi-geostrophic potential vorticity perspective[J].Chinese Journal of Atmospheric Sciences, 46(5): 1147-1166.DOI: 10.3878/j.issn.1006-9895.2205.22039 . |
null | 张景, 周玉淑, 沈新勇, 等, 2019.2016年“7.19”京津冀极端降水系统的动热力结构及不稳定条件分析[J].大气科学, 43(4): 930-942.DOI: 10.3878/j.issn.1006-9895.1812.18231.Zhang J , |
null | |
null | 张雅乐, 俞小鼎, 2021.黄河气旋暴雨过程发展演变成因分析[J].高原气象, 40(1): 74-84.DOI: 10.7522/j.issn.1000-0534.2019.00103.Zhang Y L , |
null | |
null | 赵玉春, 李泽椿, 肖子牛, 等, 2007.准静止梅雨锋连续暴雨个例的位涡反演诊断[J].气象学报, 65(3): 353-371.DOI: 10.11676/qxxb2007.034.Zhao Y C , |
null |
/
〈 |
|
〉 |