Thermodynamic Characteristics of Southwest Vortex Rainstorm in Southern Shaanxi
Received date: 2023-05-10
Revised date: 2023-09-12
Online published: 2024-06-03
Using daily 700 hPa geopotential height charts from October 2013 to October 2022, Southwest Vortex (SWV) annual data, European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 reanalysis data, and precipitation data from stations in Shaanxi Province, a statistical and diagnostic analysis was conducted on individual cases of heavy rain induced by the Southwest Vortex in southern Shaanxi.The results reveal the following insights: (1) Over the course of 10 years, there were a total of 119 days with heavy rain, among which 38 days were associated with heavy rain caused by the Southwest Vortex, accounting for about one-third (32%) of the total heavy rain days.These events were mostly observed from May to September, with the highest frequency in June.Statistically, the precipitation tended to start at night and end during the day.(2) The Southwest Vortex influencing southern Shaanxi originates primarily from the basin vortex, and typically, its movement eastward by 12 to 24 hours can lead to heavy rain in the region.The heavy rain area associated with the Southwest Vortex is mainly located in the northeast quadrant of the 700 hPa vortex center, to the south of the shear line, in the area with a large gradient of potential pseudo-equivalent potential temperature, at the intersection of the 500 hPa westerly trough and the outer southwest flow of the subtropical high, corresponding to the region of strong divergence at the 200 hPa level.(3) The study of the vertical structure of the Southwest Vortex indicates that the strong convergence center at 700 hPa is located to the east of the positive vorticity center.This region corresponds well with the heavy rainfall area.Strong divergence under high-altitude jet streams leads to air quality adjustment, lower-level convergence, and frontal genesis.(4) There are three moisture transport channels: one comes from the warm sea surface of the western Bay of Bengal, the second originates from the warm sea surface in the eastern Bay of Bengal, and the third derives from the South China Sea.During heavy rain periods, the cyclonic-like vorticity, divergence, moisture flux divergence generated by the terrain in the Qinba Mountain region combined with the systematic vorticity, divergence, and moisture flux divergence, enhancing the lower-level convergence.This is also an important factor contributing to the formation of heavy rain induced by the Southwest Vortex in southern Shaanxi.
Jing YAO , Peirong LI , Yiqing XIAO , Yirong JIANG , Xiaohu WANG . Thermodynamic Characteristics of Southwest Vortex Rainstorm in Southern Shaanxi[J]. Plateau Meteorology, 2024 , 43(3) : 655 -666 . DOI: 10.7522/j.issn.1000-0534.2023.00074
null | |
null | 陈创买, 李晓娟, 谢炯光, 等, 2021.罗-辛假相当位温的精确计算[J].热带气象学报, 36(3): 328-334.DOI: 10.16032/j.issn. 1004-4965.2020.031.Chen C M , |
null | |
null | 陈贵川, 湛芸, 王晓芳, 等, 2018.一次冷性停滞型西南低涡结构的演变特征[J].高原气象, 37(6): 1628-1642.DOI: 10.7522/j.issn.1000-0534.2018.00093.Chen G C , |
null | |
null | 陈贝, 高文良, 2015.引发四川盆地西南地区暴雨的高原涡特征分析[J].高原山地气象研究, 35(1): 9-15. |
null | |
null | 陈启智, 黄奕武, 王其伟, 等, 2007.1990-2004年西南低涡活动的统计研究[J].南京大学学报(自然科学版), 43(6): 633-642. |
null | |
null | 杜继稳, 2010.降雨型地质灾害预报预警-以黄土高原和秦巴山区为例[M].北京: 科学出版社.Du J W, 2010.Prediction and early warning of rainfall type geological disasters: a case study of Loess Plateau and Qinba Mountain area[M].Beijing: Science Press. |
null | 高文良, 郁淑华, 2018.高原涡诱发西南涡伴行个例的环境场与成因分析[J].高原气象, 37(1): 54-67.DOI: 10.7522/j.issn. 1000-0534.2017.00020.Gao W L , |
null | |
null | 高正旭, 王晓玲, 李维京, 2009.西南低涡的统计特征及其对湖北降水的影响[J].暴雨灾害, 28(4): 302-305. |
null | |
null | 韩林君, 白爱娟, 2019.2004-2017年夏半年西南涡在四川盆地形成降水的特征分析[J].高原气象, 38(3): 552-562.DOI: 10.7522/j.issn.1000-0534.2018.00100.Han L J , |
null | |
null | 黄楚惠, 李国平, 牛金龙, 等, 2022.2020年8月10日四川芦山夜发特大暴雨的动热力结构及地形影响[J].大气科学, 46(4): 989-1001.DOI: 10.3878/j.issn.1006-9895.2205.21205.Huang C H , |
null | |
null | 黄慧君, 郑建萌, 马涛, 等, 2023.夏季高原低涡切变影响下云南大雨暴雨的分布及成因研究[J].高原气象, 42(2): 403-416.DOI: 10.7522/j.issn.1000-0534.2021.00114.Huang H J , |
null | |
null | 蒋璐君, 李国平, 王兴涛, 2015.基于TRMM资料的高原涡与西南涡引发强降水的对比研究[J].大气科学, 39(2): 249-259.DOI: 10.3878/j.issn.1006-9895.1407.13260.Jiang L J , |
null | |
null | 李超, 李跃清, 蒋兴文, 2017.夏季长生命史盆地低涡活动对川渝地区季节降水的影响[J].高原气象, 36(3): 685-696.DOI: 10.7522/j.issn.1000-0534.2016.00064.Li C , |
null | |
null | 李国平, 2013.高原涡、西南涡研究的新进展及有关科学问题[J].沙漠与绿洲气象, 7(3): 1-6. |
null | |
null | 李跃清, 2021.西南涡涡源研究的有关新进展[J].高原气象, 40(6): 1394-1406.DOI: 10.7522/j.issn.1000-0534.2021.zk005.Li Y Q , 2021.New related progress on researches of the vortex source of southwest China vortex[J].Plateau Meteorology, 40(6): 1394-1406.DOI: 10.7522/j.issn.1000-0534. 2021.zk005 . |
null | 刘冲, 2019.四川盆地低涡的气候特征及年际变化[D].北京: 中国气象科学研究院, 1-59. |
null | |
null | 刘金卿, 刘红武, 徐靖宇, 2021.西南涡引发的强对流天气特征[J].高原气象, 40(3): 525-534.DOI: 10.7522/j.issn.1000-0534.2020.00027.Liu J Q , |
null | |
null | 卢敬华, 1986.西南低涡概论[M].北京: 气象出版社.Lu J H, 1986.Introduction to southwest low vortex[M].Beijing: China Meteorological Press. |
null | 毛程燕, 马依依, 孙杭媛, 等, 2022.不同路径移出型西南涡对中国中东部降水的影响[J].干旱气象, 40(3): 386-395. |
null | |
null | 屈顶, 李跃清, 2021.西南涡之九龙涡的三维环流和动力结构特征[J].高原气象, 40(6): 1497-1512.DOI: 10.7522/j.issn. 10000534.2021.zk002.Qu D , |
null | |
null | 王沛东, 李国平, 2016.秦巴山区地形对一次西南涡大暴雨过程影响的数值试验[J].云南大学学报(自然科学版), 38(3): 105-110. |
null | |
null | 文宝安, 1980.大气边界层中散度、涡度、铅直速度的计算[J].气象, 6(10): 34-35.DOI: 10.7519/j.issn.1000-0526.1980. 10.023.Wen B A , 1980.Calculation of divergence, vorticity and vertical velocity in atmospheric boundary layer[J].Meteorological Monthly, 6(10): 34-35.DOI: 10.7519/j.issn.1000-0526.1980.10.023 . |
null | 吴国雄, 蔡雅萍, 唐晓菁, 1995.湿位涡和倾斜涡度发展[J].气象学报, 53(4): 387-405. |
null | |
null | 吴国雄, 刘还珠, 1999.全型垂直涡度倾向方程和倾斜涡度发展[J].气象学报, 57(1): 1-4. |
null | |
null | 肖贻青, 娄盼星, 李明娟, 等, 2023.西北涡与西南涡共同作用引发秦巴区域大暴雨的成因分析[J].高原气象, 42(1): 98-107.DOI: 10.7522/i.issn.1000-0534.2022.00013.Xiao Y Q , |
null | |
null | 杨亦典, 彭菊蓉, 白爱娟, 等, 2021.西南涡的中尺度特征及其对陕南降水影响的研究综述[J].陕西气象, 4(5): 9-14. |
null | |
null | 赵强, 王楠, 高星星, 等, 2021.西安连续两天短时暴雨的对流条件及触发机制对比分析[J].高原气象, 40(4): 801-814.DOI: 10.7522/j.issn.1000-0534.2020.00053.Zhao Q , |
null | |
null | 周春花, 肖递祥, 郁淑华, 2022.持续东北移和在四川盆地停滞的九龙涡结构特征比较[J].高原气象, 41(5): 1220-1231.DOI: 10.7522/j.issn.1000-0534.2021.00044.Zhou C H , |
null | |
null | 周玉淑, 颜玲, 吴天贻, 等, 2019.高原涡和西南涡影响的两次四川暴雨过程的对比分析[J].大气科学, 43(4): 813-830.DOI: 10.3878/j.issn.1006-9895.1807.18147.Zhou Y S , |
null | |
null | 张雅斌, 杜继稳, 蔡蕊, 等, 2011.陕西省精细化地质灾害气象预报预警研究[J].灾害学, 26(3): 28-34. |
null | |
null | 朱乾根, 林锦瑞, 寿绍文, 等, 2007.天气学原理与方法(第4版)[M].北京: 气象出版社.Zhu Q G, Lin J R, Shou S W, et al, 2007.Principles and methods of weather (4th Edition)[M].Beijing: China Meteorological Press. |
/
〈 |
|
〉 |