Correction and Validation of the Inflow Wind Speed of the Fitch Wind Farm Parameterization

  • Zeming XIE ,
  • Ye YU ,
  • Longxiang DONG ,
  • Teng MA ,
  • Xuewei WANG
Expand
  • 1. Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,Gansu,China
    2. University of Chinese Academy of Sciences,Beijing 100049,China
    3. Pingliang Land Surface Process and Severe Weather Research Station,Pingliang 744015,Gansu,China
    4. Gansu Land Surface Process and Severe Weather Observation and Research Station,Pingliang 744015,Gansu,China

Received date: 2023-06-07

  Revised date: 2023-09-26

  Online published: 2024-06-03

Abstract

Wind farm wakes have a significant impact on momentum and turbulence fluxes within the atmospheric boundary layer, thereby influencing the local climate and environment.Mesoscale numerical models incorporating wind farm parameterizations are powerful tools for studying the climate and environmental impacts of wind farms.In this study, the wind speed and turbulence kinetic energy profiles of the Fitch wind farm parameterization scheme in the WRF mesoscale model are evaluated in the turbine and wake regions using high-resolution Large Eddy Simulations (LES) as “true values” and a method based on the relation derived from classical momentum theory is proposed to correct the grid-inflow wind speed.The method takes into account the blocking effect caused by the grid equivalent thrust and the corrected wind speed is closer to the free-stream wind speed.Results show that the difference between the grid-inflow wind speed from the original Fitch parameterization scheme and the LES is significant and sensitive to the model horizontal resolution.The Fitch-new parameterization with corrected grid-inflow wind speed reduces the relative error in absolute value between grid-inflow and free-stream wind speed to less than 1% across different horizontal resolutions (1000 m, 500 m, and 250 m).The spatially averaged thrust and output power are consistent with LES results.The Fitch-new parameterization improves the simulated wind speed deficit in the wake zone of wind turbine, especially in the grid with turbine under high resolution.Although the simulated increase in turbulent kinetic energy and its vertical distribution in the wake zone is improved compared to the original Fitch scheme, there are certain issues that require further investigation.

Cite this article

Zeming XIE , Ye YU , Longxiang DONG , Teng MA , Xuewei WANG . Correction and Validation of the Inflow Wind Speed of the Fitch Wind Farm Parameterization[J]. Plateau Meteorology, 2024 , 43(3) : 790 -801 . DOI: 10.7522/j.issn.1000-0534.2023.00077

References

null
Abkar M Porté-Agel F2015.A new wind-farm parameterization for large-scale atmospheric models[J].Journal of Renewable and Sustainable Energy7(1): 013121.DOI: 10.1063/1.4907600 .
null
Archer C L Mirzaeisefat S Lee S2013.Quantifying the sensitivity of wind farm performance to array layout options using large-eddy simulation[J].Geophysical Research Letters40(18): 4963-4970.DOI: 10.1002/grl.50911 .
null
Archer C L Wu S C Ma Y L, et al, 2020.Two corrections for turbulent kinetic energy generated by wind farms in the WRF Model[J].Monthly Weather Review, 148: 4823-4835.DOI: 10.1175/MWR-D-20-0097.1 .
null
Armstrong A Burton R R Lee S E, et al, 2016.Ground-level climate at a peatland wind farm in Scotland is affected by wind turbine operation[J].Environmental Research Letters, 11(4): 044024(8pp).DOI: 10.1088/1748-9326/11/4/044024 .
null
Baidya R S Pacala S W Walko R L2014.Can large wind farms affect local meteorology?[J].Journal of Geophysical Research, 109(D19).DOI: 10.1029/2004JD004763 .
null
Churchfield M J Lee S Michalakes J, et al, 2012a.A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics[J].Journal of Turbulence, 13: N14.DOI: 10. 1080/14685248.2012.668191 .
null
Churchfield M J Moriarty P J Martinez L, et al, 2012b.A large-eddy simulations of wind-plant aerodynamics[C]//Nashville, Tennessee: 50th AIAA Aerospace Sciences Meeting.DOI: 10.2514/6.2012-537 .
null
Churchfield M J Lee S Michalakes J, et al, 2014.Adding complex terrain and stable atmospheric condition capability to the OpenFOAM-based flow solver of the simulator for on/offshore wind farm applications (SOWFA)[J].ITM Web of Conferences, 2: 02001.DOI: 10.1051/itmconf/20140202001 .
null
Fitch C A Olson B J Lundquist K J, et al, 2012.Local and mesoscale impacts of wind farms as parameterized in a mesoscale NWP Model[J].Monthly Weather Review140(9): 3017-3038.DOI: 10.1175/MWR-D-11-00352.1 .
null
Fleming P A Gebraad P M O Lee S, et al, 2014.Evaluating techniques for redirecting turbine wakes using SOWFA[J].Renewable Energy, 70: 211-218.DOI: 10.1016/j.renene.2014.02.015 .
null
Ghaisas N S Archer C L2016.Geometry-based models for studying the effects of wind farm layout[J].Journal of Atmospheric and Oceanic Technology33(3): 481-501.DOI: 10.1175/JTECH-D-14-00199.1 .
null
Harris R A Zhou L M Xia G2014.Satellite observations of wind farm impacts on nocturnal land surface temperature in Iowa[J].Remote Sensing6(12): 12234-12246.DOI: 10.3390/rs61212234 .
null
Hasager C B Vincent P Husson R, et al, 2015.Comparing satellite SAR and wind farm wake models[J].Journal of Physics: Conference Series, 625: 012035.DOI: 10.1088/1742-6596/625/1/012035 .
null
Hunsaker D F Phillips W F, 2013 Momentum theory with slipstream rotation applied to wind turbines[C]//31st AIAA Applied Aerodynamics Conference.San Diego: American Institute of Aeronautics and Astronautics.
null
Jiménez P A Dudhia J González-Rouco J F, et al, 2012.A revised scheme for the WRF surface layer formulation[J].Monthly Weather Review140(3): 898-918, DOI: 10.1175/MWR-D-11-00056.1 .
null
Manwell J F McGowan J G Rogers A L2002.Wind energy explained: theory, design and application[M].Wiley, Chichester England, 84-88.DOI: 10.1002/0470846127.app1 .
null
Nakanishi M Niino H2009.Development of an improved turbulence closure model for the atmospheric boundary layer[J].Journal of the Meteorological Society of Japan87(5): 895-912.DOI: 10.2151/jmsj.87.895 .
null
Nathan J Meyer F AR Troldborg N, et al, 2017.Comparison of open FOAM and EllipSys3D actuator line methods with (NEW) MEXICO results[J].Journal of Physics: Conference Series854(1): 012033.DOI: 10.1088/1742-6596/854/1/012033 .
null
Narbel P A Hansen J P2014.Estimating the cost of future global energy supply[J].Renewable Sustainable Energy Reviews, 34: 91-97.DOI: 10.1016/j.rser.2014.03.011 .
null
Pan Y Archer C L2018.A hybrid wind-farm parametrization for mesoscale and climate models[J].Boundary-Layer Meteorology, 168: 469-495.DOI: 10.1007/s10546-018-0351-9 .
null
Siedersleben S K Platis A Lundquist J K, et al, 2018.Evaluation of a wind farm parametrization for mesoscale atmospheric flow models with aircraft measurements[J].Meteorologische Zeitschrift.27(5): 401-415.DOI: 10.1127/metz/2018/0900 .
null
Siedersleben S K Platis A Lundquist J K, et al, 2020.Turbulent kinetic energy over large offshore wind farms observed and simulated by the mesoscale model WRF(3.8.1) [J].Geoscientific Model Development13(1): 249-268, DOI: 10.5194/gmd-13-249-2020 .
null
Volker P J H Badger J Hahmann A N, et al, 2015.The explicit wake parametrisation V1.0: a wind farm parametrisation in the mesoscale model WRF[J].Geoscientific Model Development, 8: 3715-3731.DOI: 10.5194/gmd-8-3715-2015 .
null
Wang Q Luo K Yuan R Y, et al, 2019.Wake and performance interference between adjacent wind farms: case study of Xinjiang in China by means of mesoscale simulations[J].Energy, 166: 1168-1180.DOI: 10.1016/j.energy.2018.10.111 .
null
Wang Q Luo K Wu C L, et al, 2022.Mesoscale simulations of a real onshore wind power base in complex terrain: Wind farm wake behavior and power production[J].Energy, 241: 122873.DOI: 10.1016/j.energy.2021.122873 .
null
International Energy Agency, 2023.Electricity market report 2023[R].France Paris: International Energy Agency.
null
艾泽, 常蕊, 陈正洪, 等, 2022.不同下垫面下风电场对夏季气候的影响[J].高原气象41(4): 1017-1029.DOI: 10.7522/j.issn.1000-0534.2021.00071.Ai Z
null
Chang R Chen Z H, et al, 2022.The impact of wind farm on local climate under different underlying surface conditions during summertime[J].Plateau Meteorology41(4): 1017-1029.DOI: 10.7522/j.issn.1000-0534.2021.00071 .
null
蒋俊霞, 高晓清, 杨丽薇, 等, 2019.风电场对气候环境的影响研究进展[J].地球科学进展34(10): 1038-1049.DOI: 10.11867/j.issn.1001-8166.Jiang J X
null
Gao X Q Yang L W, et al, 2019.Progress in the research on the impact of wind farms on climate and environment[J].Advances in Earth Science34(10): 1038-1049.DOI: 10.11867/j.issn.1001-8166 .
null
李国庆, 李晓兵, 2016.风电场对环境的影响研究进展[J].地理科学进展35(8): 1017-1026.DOI: 10.18306/dlkxjz.2016. 08.011.Li G Q
null
Li X B2016.Research progress of wind farm impact on the environment[J].Advances in Earth Science35(8): 1017-1026.DOI: 10.18306/dlkxjz.2016.08.011 .
null
李思, 章晓冬, 尕藏程林, 等, 2020.大型风力发电场对华北地区大气影响的数值模拟研究[J].高原气象39(2): 437-444.DOI: 10.7522/j.issn.1000-0534.2019.00112.Li S
null
Zhang X D Gazang C L, et al, 2020.Numerical simulations of the influence of large-scale wind farms on meteorological conditions in North China[J].Plateau Meteorology39(2): 437-444.DOI: 10. 7522/j.issn.1000-0534.2019.00112 .
null
刘磊, 高晓清, 陈伯龙, 等, 2012.大规模风电场建成后对风能资源影响的研究[J].高原气象31(4): 1139-1144.
null
Liu L Gao X Q Chen B L, et al, 2012.Preliminary estimates of wind energy resources deficit in large wind farm[J].Plateau Meteorology31(4): 1139-1144.
null
马兴悦, 余晔, 夏敦胜, 等, 2022.风电场运行对地表温度的影响——以河北张家口北部风电场为例[J].高原气象41(4): 1062-1073.DOI: 10.7522/j.issn.1000-0534.2022.00060.Ma X Y
null
Yu E Xia D S, et al, 2022.Impacts of wind farms on land surface temperature—a case study on the wind farm in northern Zhangjiakou, Hebei[J].Plateau Meteorology41(4): 1062-1073.DOI: 10.7522/j.issn.1000-0534.2022.00060 .
null
夏馨, 余晔, 董龙翔, 等, 2022.风电场建设前后近地面湍流强度变化特征[J].高原气象41(4): 1062-1073.DOI: 10.7522/j.issn.1000-0534.2021.00005.Xia X
null
Yu Y Dong L X, et al, 2022.Characteristics of near surface turbulence intensity before and after wind farm construction[J].Plateau Meteorology41(4): 1062-1073.DOI: 10.7522/j.issn.1000-0534.2021.00005 .
null
王姝, 刘树华, 陈建洲, 等, 2018.使用WRF-Fitch对湖区风力发电机尾流效应特征的数值模拟[J].北京大学学报(自然科学版)54(3): 605-615.DOI: 10.13209/j.0479-8023.2017.187.Wang S
null
Liu S H Chen J Z, et al, 2018.Case studies: simulation on characteristics of wind turbine wake effect in a lake-side wind farm with WRF-Fitch[J].Acta Scientiarum Naturalium Universitatis Pekinensis54(3): 605-615.DOI: 10.13209/j.0479-8023.2017.187 .
null
周建平, 2020.中国可再生能源发展增量几何[J].能源133(1): 53-57.
null
Zhou J P2020.What is the growth rate of renewable energy in China[J].Energy133(1): 53-57.
Outlines

/