null | Abkar M, Porté-Agel F, 2015.A new wind-farm parameterization for large-scale atmospheric models[J]. Journal of Renewable and Sustainable Energy, 7(1): 013121.DOI: 10.1063/1.4907600 . |
null | Archer C L, Mirzaeisefat S, Lee S, 2013.Quantifying the sensitivity of wind farm performance to array layout options using large-eddy simulation[J]. Geophysical Research Letters, 40(18): 4963-4970.DOI: 10.1002/grl.50911 . |
null | Archer C L, Wu S C, Ma Y L, et al, 2020.Two corrections for turbulent kinetic energy generated by wind farms in the WRF Model[J]. Monthly Weather Review, 148: 4823-4835.DOI: 10.1175/MWR-D-20-0097.1 . |
null | Armstrong A, Burton R R, Lee S E, et al, 2016.Ground-level climate at a peatland wind farm in Scotland is affected by wind turbine operation[J]. Environmental Research Letters, 11(4): 044024(8pp).DOI: 10.1088/1748-9326/11/4/044024 . |
null | Baidya R S, Pacala S W, Walko R L, 2014.Can large wind farms affect local meteorology?[J]. Journal of Geophysical Research, 109(D19).DOI: 10.1029/2004JD004763 . |
null | Churchfield M J, Lee S, Michalakes J, et al, 2012a.A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics[J]. Journal of Turbulence, 13: N14.DOI: 10. 1080/14685248.2012.668191 . |
null | Churchfield M J, Moriarty P J, Martinez L, et al, 2012b.A large-eddy simulations of wind-plant aerodynamics[C]//Nashville, Tennessee: 50th AIAA Aerospace Sciences Meeting.DOI: 10.2514/6.2012-537 . |
null | Churchfield M J, Lee S, Michalakes J, et al, 2014.Adding complex terrain and stable atmospheric condition capability to the OpenFOAM-based flow solver of the simulator for on/offshore wind farm applications (SOWFA)[J]. ITM Web of Conferences, 2: 02001.DOI: 10.1051/itmconf/20140202001 . |
null | Fitch C A, Olson B J, Lundquist K J, et al, 2012.Local and mesoscale impacts of wind farms as parameterized in a mesoscale NWP Model[J]. Monthly Weather Review, 140(9): 3017-3038.DOI: 10.1175/MWR-D-11-00352.1 . |
null | Fleming P A, Gebraad P M O, Lee S, et al, 2014.Evaluating techniques for redirecting turbine wakes using SOWFA[J]. Renewable Energy, 70: 211-218.DOI: 10.1016/j.renene.2014.02.015 . |
null | Ghaisas N S, Archer C L, 2016.Geometry-based models for studying the effects of wind farm layout[J]. Journal of Atmospheric and Oceanic Technology, 33(3): 481-501.DOI: 10.1175/JTECH-D-14-00199.1 . |
null | Harris R A, Zhou L M, Xia G, 2014.Satellite observations of wind farm impacts on nocturnal land surface temperature in Iowa[J]. Remote Sensing, 6(12): 12234-12246.DOI: 10.3390/rs61212234 . |
null | Hasager C B, Vincent P, Husson R, et al, 2015.Comparing satellite SAR and wind farm wake models[J]. Journal of Physics: Conference Series, 625: 012035.DOI: 10.1088/1742-6596/625/1/012035 . |
null | Hunsaker D F, Phillips W F, 2013 Momentum theory with slipstream rotation applied to wind turbines[C]//31st AIAA Applied Aerodynamics Conference.San Diego: American Institute of Aeronautics and Astronautics. |
null | Jiménez P A, Dudhia J, González-Rouco J F, et al, 2012.A revised scheme for the WRF surface layer formulation[J]. Monthly Weather Review, 140(3): 898-918, DOI: 10.1175/MWR-D-11-00056.1 . |
null | Manwell J F, McGowan J G, Rogers A L, 2002. Wind energy explained: theory, design and application[M].Wiley, Chichester England, 84-88.DOI: 10.1002/0470846127.app1 . |
null | Nakanishi M, Niino H, 2009.Development of an improved turbulence closure model for the atmospheric boundary layer[J]. Journal of the Meteorological Society of Japan, 87(5): 895-912.DOI: 10.2151/jmsj.87.895 . |
null | Nathan J, Meyer F AR, Troldborg N, et al, 2017.Comparison of open FOAM and EllipSys3D actuator line methods with (NEW) MEXICO results[J]. Journal of Physics: Conference Series, 854(1): 012033.DOI: 10.1088/1742-6596/854/1/012033 . |
null | Narbel P A, Hansen J P, 2014.Estimating the cost of future global energy supply[J]. Renewable Sustainable Energy Reviews, 34: 91-97.DOI: 10.1016/j.rser.2014.03.011 . |
null | Pan Y, Archer C L, 2018.A hybrid wind-farm parametrization for mesoscale and climate models[J]. Boundary-Layer Meteorology, 168: 469-495.DOI: 10.1007/s10546-018-0351-9 . |
null | Siedersleben S K, Platis A, Lundquist J K, et al, 2018.Evaluation of a wind farm parametrization for mesoscale atmospheric flow models with aircraft measurements[J]. Meteorologische Zeitschrift. 27(5): 401-415.DOI: 10.1127/metz/2018/0900 . |
null | Siedersleben S K, Platis A, Lundquist J K, et al, 2020.Turbulent kinetic energy over large offshore wind farms observed and simulated by the mesoscale model WRF(3.8.1) [J]. Geoscientific Model Development, 13(1): 249-268, DOI: 10.5194/gmd-13-249-2020 . |
null | Volker P J H, Badger J, Hahmann A N, et al, 2015.The explicit wake parametrisation V1.0: a wind farm parametrisation in the mesoscale model WRF[J]. Geoscientific Model Development, 8: 3715-3731.DOI: 10.5194/gmd-8-3715-2015 . |
null | Wang Q, Luo K, Yuan R Y, et al, 2019.Wake and performance interference between adjacent wind farms: case study of Xinjiang in China by means of mesoscale simulations[J]. Energy, 166: 1168-1180.DOI: 10.1016/j.energy.2018.10.111 . |
null | Wang Q, Luo K, Wu C L, et al, 2022.Mesoscale simulations of a real onshore wind power base in complex terrain: Wind farm wake behavior and power production[J]. Energy, 241: 122873.DOI: 10.1016/j.energy.2021.122873 . |
null | International Energy Agency, 2023.Electricity market report 2023[R].France Paris: International Energy Agency. |
null | |
null | Chang R, Chen Z H, et al, 2022.The impact of wind farm on local climate under different underlying surface conditions during summertime[J]. Plateau Meteorology, 41(4): 1017-1029.DOI: 10.7522/j.issn.1000-0534.2021.00071 . |
null | |
null | Gao X Q, Yang L W, et al, 2019.Progress in the research on the impact of wind farms on climate and environment[J]. Advances in Earth Science, 34(10): 1038-1049.DOI: 10.11867/j.issn.1001-8166 . |
null | |
null | Li X B, 2016.Research progress of wind farm impact on the environment[J]. Advances in Earth Science, 35(8): 1017-1026.DOI: 10.18306/dlkxjz.2016.08.011 . |
null | |
null | Zhang X D, Gazang C L, et al, 2020.Numerical simulations of the influence of large-scale wind farms on meteorological conditions in North China[J]. Plateau Meteorology, 39(2): 437-444.DOI: 10. 7522/j.issn.1000-0534.2019.00112 . |
null | 刘磊, 高晓清, 陈伯龙, 等, 2012.大规模风电场建成后对风能资源影响的研究[J].高原气象, 31(4): 1139-1144. |
null | Liu L, Gao X Q, Chen B L, et al, 2012.Preliminary estimates of wind energy resources deficit in large wind farm[J].Plateau Meteorology, 31(4): 1139-1144. |
null | |
null | Yu E, Xia D S, et al, 2022.Impacts of wind farms on land surface temperature—a case study on the wind farm in northern Zhangjiakou, Hebei[J]. Plateau Meteorology, 41(4): 1062-1073.DOI: 10.7522/j.issn.1000-0534.2022.00060 . |
null | |
null | Yu Y, Dong L X, et al, 2022.Characteristics of near surface turbulence intensity before and after wind farm construction[J]. Plateau Meteorology, 41(4): 1062-1073.DOI: 10.7522/j.issn.1000-0534.2021.00005 . |
null | |
null | Liu S H, Chen J Z, et al, 2018.Case studies: simulation on characteristics of wind turbine wake effect in a lake-side wind farm with WRF-Fitch[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 54(3): 605-615.DOI: 10.13209/j.0479-8023.2017.187 . |
null | 周建平, 2020.中国可再生能源发展增量几何[J].能源, 133(1): 53-57. |
null | Zhou J P, 2020.What is the growth rate of renewable energy in China[J].Energy, 133(1): 53-57. |