Simulation and Evaluation of Soil Temperature and Moisture during Freeze-thaw Process in Xizang Plateau by CLM5.0

  • Zhehao ZHANG ,
  • Xin LAI ,
  • Ge ZHANG ,
  • Siyuan YAO ,
  • Suyu ZHANG
Expand
  • School of Atmospheric Sciences,Plateau Atmosphere and Environment Key Laboratory of Sichuan Province,Joint Laboratory of Climate and Environment Change,Chengdu Plain Urban Meteorology and Environment Observation and Research Station of Sichuan Province,Chengdu 610225,Sichuan,China

Received date: 2023-08-23

  Revised date: 2024-04-07

  Online published: 2024-04-07

Abstract

The China Meteorological Forcing Dataset(0.1°×0.1°) from 1979 -2018 was used as atmospheric forcing data to drive CLM5.0 (Community Land Model version 5.0) to simulate soil temperature and moisture changes in the Qinghai-Xizang Plateau region from 1979 to 2018.Divide the soil freeze-thaw process into two stages: freezing period and thawing period.By comparing and validating CLM5.0 simulation with site observation data, assimilation data (GLDAS-Noah), and satellite remote sensing data (MODIS soil temperature data and ESA CCI-COMBINED soil moisture data) in two stages, this study explores the applicability of CLM5.0 simulation of soil temperature and moisture in the Qinghai-Xizang Plateau.The results indicate that: (1) CLM5.0 can accurately describe the dynamic changes in soil temperature and moisture at stations on the Qinghai-Xizang Plateau.The soil temperature and moisture simulated by CLM5.0 have consistent variation characteristics with the observed data and are numerically close.The accuracy of CLM5.0 simulation is higher than that of GLDAS Noah.CLM5.0 provides a more accurate description of soil temperature at the stations.(2) CLM5.0 can accurately describe the soil temperature and moisture characteristics during the freeze-thaw process in the Qinghai-Xizang Plateau.CLM5.0 simulated soil temperature and moisture show a significant positive correlation with MODIS and ESA CCI-COMBINED remote sensing data on the Qinghai-Xizang Plateau, with correlation coefficients mostly above 0.9.CLM5.0 has relatively better simulation ability for soil temperature in Qinghai-Xizang Plateau areas.CLM5.0 has better simulation ability for soil moisture during thawing periods than during freezing periods.CLM5.0 overestimates the soil temperature of the Qinghai-Xizang Plateau as a whole, with an average deviation mostly between 0~4 ℃.The average deviation of soil moisture simulated by CLM5.0 is mostly between -0.1~0.1 m3·m-3, and the average deviation of soil moisture during thawing period is relatively small.(3) The soil temperature and moisture data from CLM5.0 simulation, GLDAS-Noah, MODIS, and ESA CCI-COMBINED remote sensing all have similar spatial distribution characteristics, with higher similarity in the spatial distribution characteristics of soil temperature.CLM5.0 has higher spatial resolution and more precise soil stratification, which can better describe the details of soil temperature and moisture.(4) The CLM5.0 simulation data shows an overall warming and drying trend in the Qinghai-Xizang Plateau, while the MODIS and ESA CCI-COMBINED remote sensing data show an overall warming and moistening trend.The trend of soil temperature changes simulated by CLM5.0 is relatively accurate, while there is a greater deviation in the trend of soil moisture changes.

Cite this article

Zhehao ZHANG , Xin LAI , Ge ZHANG , Siyuan YAO , Suyu ZHANG . Simulation and Evaluation of Soil Temperature and Moisture during Freeze-thaw Process in Xizang Plateau by CLM5.0[J]. Plateau Meteorology, 2025 , 44(1) : 32 -45 . DOI: 10.7522/j.issn.1000-0534.2024.00057

References

null
Bob S Yang K2019.Time-lapse observation dataset of soil temperature and humidity on the Tibetan Plateau (2008-2016)[DB/OL].National Tibetan Plateau Data Center, DOI: 10.11888/Soil.tpdc.270110 .
null
Brocca L Hasenauer S Lacava T, et al, 2011.Soil moisture estimation through ASCAT and AMSR-E sensors: an intercomparison and validation study across Europe[J].Remote Sensing Environment115(12): 3390-3408.DOI: 10.1016/j.rse.2011.08.003 .
null
Chen B L Luo S Q Lv S H, et al, 2014.Effects of the soil freeze-thaw process on the regional climate of the Qinghai-Tibet Plateau[J].Climate Research, 59: 243-257.DOI: 10.3354/cr01217 .
null
Chen Y Y Yang K Tang W J, et al, 2012.Parameterizing soil organic carbon's impacts on soil porosity and thermal parameters for Eastern Tibet grasslands[J].Science China: Earth Sciences55(6): 1001-1011.DOI: 10.1007/ s11430-012-4433-0 .
null
Chow K C Chan J C Shi X, et al, 2008.Time-lagged effects of spring Tibetan Plateau soil moisture on the monsoon over China in early summer[J].International Journal of Climatology28(1): 55-67.DOI: 10.1002/joc.1511 .
null
Clark M P Kavetski D2010.Ancient numerical daemons of conceptual hydrological modeling: 1.fidelity and efficiency of time stepping schemes[J].Water Resources Research46(10): W10510.1-W10510.23.DOI: 10.1029/2009WR008894 .
null
Deng M S Meng X H Lv Y Q, et al, 2020.Comparison of soil water and heat transfer modeling over the Tibetan Plateau using two community land surface model (CLM) versions[J].Journal of Advances in Modeling Earth Systems12(10): 1-20.DOI: 10.1029/2020MS002189 .
null
Guo D L Yang M X Wang H J2011.Sensible and latent heat flux response to diurnal variation in soil surface temperature and moisture under different freeze/thaw soil conditions in the seasonal frozen soil region of the central Tibetan Plateau[J].Environmental Earth Sciences63(1): 97-107.DOI: 10.1007/s12665-010-0672-6 .
null
Lawrence D M Fisher R A Koven C D, et al, 2019.The community land model version 5: description of new features, benchmarking, and impact of forcing uncertainty[J].Journal of Advances in Modeling Earth Systems11(12): 4245-4287.DOI: 10.1029/2018MS001583 .
null
Lawrence D M Slater A G Romanovsky V E, et al, 2008.Sensitivity of a model projection of near-surface permafrost degradation to soil column depth and representation of soil organic matter[J].Journal of Geophysical Research, 113: e2007JF000883.DOI: 10.1029/2007JF000883 .
null
Li R Zhao L Wu T H, et al, 2019.Soil thermal conductivity and its influencing factors at the Tanggula permafrost region on the Qinghai-Tibet Plateau[J].Agricultural and Forest Meteorology, 264: 235–246.DOI: 10.1016/j.agrformet.2018.10.011 .
null
Luo S Q Fang X W Lv S H, et al, 2017.Improving CLM4.5 simulations of land-atmosphere exchange during freeze-thaw processes on the Tibetan Plateau[J].Journal of Meteorological Research31(5): 916–930.DOI: 10.1007/s13351-017-6063-0 .
null
Peng X Q Frauenfeld O W Cao B, et al, 2016.Response of changes in seasonal soil freeze-thaw state to climate change from 1950 to 2010 across China[J].Journal of Geophysical Research: Earth Surface121(11): 1984-2000.DOI: 10.1002/2016JF003876 .
null
Swenson S C Lawrence D M2014.Assessing a dry surface layer-based soil resistance parameterization for the Community Land Model using GRACE and FLUXNET-MTE data[J].Journal of Geophysical Research: Atmospheres119(17): 299-312.DOI: 10.1002/2014JD022314 .
null
Wang J Y Luo S Q Li Z G, et al, 2019.The freeze/thaw process and the surface energy budget of the seasonally frozen ground in the source region of the Yellow River[J].Theoretical and Applied Climatology138(3-4): 1631-1646.DOI: 10.1007/s00704-019-02917-6 .
null
Wei S G Dai Y J Liu B Y, et al, 2013.A China dataset of soil properties for Land Surface Modeling[J].Journal of Advances in Modeling Earth Systems5(2): 212-224.DOI: 10.1002/jame.20026 .
null
Yang K Wang C H2019a.Water storage effect of soil freeze-thaw process and its impacts on soil hydro-thermal regime variations[J].Agricultural and Forest Meteorology, 265: 280-294.DOI: 10.1016/j.agrformet.2019.02.028 .
null
Yang K Wang C H2019b.Seasonal persistence of soil moisture anomalies related to freeze-thaw over the Tibetan Plateau and prediction signal of summer precipitation in eastern China[J].Climate Dynamics53(3-4): 2411-2424.DOI: 10.1007/s00382-019-04867-1 .
null
Yang K He J Tang W, et al, 2019c.China meteorological forcing dataset (1979-2018)[DB/OL].National Tibetan Plateau Data Center, DOI: 10.11888/AtmosphericPhysics.tpe.249369.file .
null
Yang K Wu H Qin J, et al, 2014.Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: a review[J].Global and Planetary Change112(1): 79-91.DOI: 10.1016/j.gloplacha.2013.12.001 .
null
Yuan L M Zhao L Li R, et al, 2020.Spatiotemporal characteristics of hydrothermal processes of the active layer on the central and northern Qinghai-Tibet plateau[J].Science of the Total Environment, 712: 136392.DOI: 10.1016/j.scitotenv.2019.136392 .
null
Zhu L Y Wang H Q Tong C, et al, 2019.Evaluation of ESA Active, Passive and Combined Soil Moisture Products Using Upscaled Ground Measurements[J].Sensors19(12): 2718.DOI: 10. 3390/s19122718 .
null
Zou D F Zhao L Sheng Y, et al, 2017.A new map of permafrost distribution on the Tibetan Plateau[J].Cryosphere11(6): 2527-2542.DOI: 10.5194/tc-11-2527-2017 .
null
陈渤黎, 罗斯琼, 吕世华, 等, 2017.基于CLM模式的青藏高原土壤冻融过程陆面特征研究[J].冰川冻土39(4): 760-770.DOI: 10.7522/j.issn.1000-0240.2017.0086.Chen B L
null
Luo S Q Lv S H, et al, 2017.Research on land surface characteristics of soil freezing and thawing processes in the Tibet Plateau Based on CLM Model[J].Journal of Glaciology and Geocryology39(4): 760-770.DOI: 10.7522/j.issn.1000-0240.2017.0086 .
null
程国栋, 赵林, 李韧, 等, 2019.青藏高原多年冻土特征、 变化及影响[J].科学通报, 64: 2783-2795.DOI: 10.1360/TB-2019-0191.Cheng G D
null
Zhao L Li R, et al, 2019.Characteristics, changes, and effects of permafrost on the Tibet Plateau[J].Chinese Science Bulletin, 64: 2783-2795.DOI: 10.1360/TB-2019-0191 .
null
符晴, 阳坤, 郑东海, 等, 2022.青藏高原中部土壤有机质含量对不同深度土壤温湿度的影响研究[J].高原气象41(5): 1097-1108.DOI: 10.7522/j.issn.1000-0534.2021.00039.Fu Q
null
Yang K Zheng D H, et al, 2022.Impact of soil organic matter content on soil moisture and temperature at different depths in the central Qinghai-Xizang Plateau[J].Plateau Meteorology41(5): 1097-1108.DOI: 10.7522/j.issn.1000-0534.2021.00039 .
null
李蓉蓉, 赵平, 2023.青藏高原非冻结期观测的土壤湿度和模式产品的对比分析[J].气象与环境科学46(1): 39-47.Doi: 10.16765j.cnki.1673-7148.2023.01.006.Li R R
null
Zhao P2023.Comparative analysis of soil moisture and model products observed during non-freezing periods on the Qinghai Tibet Plateau[J].Meteorology and Environmental Science46(1): 39-47.Doi: 10.16765j.cnki.1673-7148.2023.01.006 .
null
李时越, 杨凯, 王澄海, 2018.陆面模式CLM4.5在青藏高原土壤冻融期的偏差特征及其原因[J].冰川冻土40(2): 322-334.DOI: 10.7522/j.issn.1000-0240.2018.0037.Li S Y
null
Yang K Wang C H2018.Deviation characteristics and reasons of land surface model CLM4.5 during soil freeze-thaw period in the Qinghai Tibet Plateau[J].Journal of Glaciology and Geocryology40(2): 322-334.DOI: 10.7522/j.issn.1000-0240.2018.0037 .
null
刘川, 余晔, 解晋, 等, 2015.多套土壤温湿度资料在青藏高原的适用性[J].高原气象34(3): 653-665.DOI: 10.7522/j.issn.1000-0534.2015.00034.Liu C
null
Yu Y Xie J, et al, 2015.Applicability of multiple sets of soil temperature and humidity data in the Qinghai Tibet Plateau[J].Plateau Meteorology34(3): 653-665.DOI: 10.7522/j.issn.1000-0534.2015.00034 .
null
刘闻慧, 文军, 陈金雷, 等, 2022.青藏高原土壤冻融过程关键参量时空分布特征分析[J].高原气象41(1): 11-23.DOI: 10.7522/j.issn.1000-0534.2021.00024.Liu W H
null
Wen J Chen J L, et al, 2022.Characteristic analysis of the spatio-temporal distribution of key variables during the soil freeze-thaw process over the Qinghai-Xizang Plateau[J].Plateau Meteorology41(1): 11-23.DOI: 10.7522/j.issn.1000-0534.2021.00024 .
null
罗红羽, 于海鹏, 胡泽勇, 等, 2023.青藏高原热源对我国旱区气候异常影响研究进展[J].高原气象42(2): 257-271.DOI: 10.7522/j.issn.1000-0534.2022.00070.Luo H Y
null
Yu H P Hu Z Y, et al, 2023.Progress of the impact of the Qinghai-Xizang Plateau heat sources on climate anomalies in drylands of China[J].Plateau Meteorology42(2): 257-271.DOI: 10.7522/j.issn.1000-0534.2022.00070 .
null
满子豪, 翁白莎, 杨裕恒, 等, 2020.青藏高原冻融过程期划分及发展趋势研究[J].水电能源科学38(7): 16-19+29.DOI: 1000-7709(2020)07-0016-04.Man Z H
null
Wen B S Yang Y H, et al, 2020.A study on the division and development trends of freezing and thawing processes in the Qinghai Tibet Plateau[J].Water Resources and Power38(7): 16-19+29.DOI: 1000-7709(2020)07-0016-04 .
null
王静, 祁莉, 何金海, 等, 2016.青藏高原春季土壤湿度与我国长江流域夏季降水的联系及其可能机理[J].地球物理学报59(11): 3985-3995.DOI: 10.6038/cjg20161105.Wang J
null
Qi L He J H, et al, 2016.The relationship and possible mechanism between spring soil moisture in the Qinghai Tibet Plateau and summer precipitation in the Yangtze River Basin of China[J].Chinese Journal of Geophysics59(11): 3985-3995.DOI: 10.6038/cjg20161105 .
null
夏坤, 罗勇, 李伟平, 2011.青藏高原东北部土壤冻融过程的数值模拟[J].科学通报56(22): 1828-1838.DOI: 10.1007/sl1434-011-4542-8.Xia K
null
Luo Y Li W P2011.Numerical simulation of soil freeze-thaw process in the northeast of the Qinghai Tibet Plateau[J].Chinese Science Bulletin56(22): 1828-1838.DOI: 10.1007/sl1434-011-4542-8 .
null
徐洪亮, 常娟, 郭林茂, 等, 2021.青藏高原腹地多年冻土区活动层水热过程对气候变化的响应[J].高原气象40(2): 229-243.DOI: 10.7522/j.issn.1000-0534.2020.00071.Xu H L
null
Chang J Guo M L, et al, 2021.The response of hydrothermal processes in the active layer of permafrost regions in the hinterland of the Qinghai Tibet Plateau to climate change[J].Plateau Meteorology40(2): 229-243.DOI: 10.7522/j.issn.1000-0534.2020.00071 .
null
杨淑华, 吴通华, 李韧, 等, 2018.青藏高原近地表土壤冻融状况的时空变化特征[J].高原气象37(1): 43-53.DOI: 10.7522/j.issn.1000-0534.2017.00043.Yang S H
null
Wu T H Li R, et al, 2018.The spatiotemporal variation characteristics of soil freeze-thaw conditions near the surface of the Qinghai Tibet Plateau [J].Plateau Meteorology37(1): 43-53.DOI: 10.7522/j.issn.1000-0534.2017.00043 .
null
袁源, 赖欣, 巩远发, 等, 2019.CLM4.5模式对青藏高原土壤湿度的数值模拟及评估[J].大气科学43(3): 676-690.DOI: 10.3878/j.issn.1006-9895.180&18143.Yuan Y
null
Lai X Gong Y F, et al, 2019.Numerical simulation and evaluation of soil moisture in the Qinghai Tibet Plateau using the CLM4.5 model[J].Chinese Journal of Atmospheric Sciences43(3): 676-690.DOI: 10.3878/j.issn.1006-9895.180&18143 .
null
张戈, 赖欣, 刘康, 2023.黄河源区玛曲土壤冻融过程中地表水热交换特征分析[J].高原气象42(3): 575-589.DOI: 10.7522/j.issn.1000-0534.2022.00083.Zhang G
null
Lai X Liu K2023.Characteristics of surface water and heat exchange during soil freezing and thawing of Maqu Station in the Source Area of the Yellow River[J].Plateau Meteorology42(3): 575-589.DOI: 10.7522/j.issn.1000-0534.2022.00083 .
null
赵林, 胡国杰, 邹德富, 等, 2019.青藏高原多年冻土变化对水文过程的影响[J].中国科学院院刊34(11): 1233-1246.DOI: 10.16418/j.issn.1000-3045.2019.11.006.Zhao L
null
Hu G J Zou D F, et al, 2019.The impact of permafrost changes on hydrological processes in the Qinghai Tibet Plateau[J].Bulletin of Chinese Academy of Sciences34(11): 1233-1246.DOI: 10.16418/j.issn.1000-3045.2019.11.006 .
null
周志雄, 周凤玺, 张明礼, 等, 2023.季节降雨特征对青藏高原中部冻土活动层的水热影响[J].高原气象42(5): 1172-1181.DOI: 10.7522/j.issn.1000-0534.2023.00017.Zhou Z X
null
Zhou F X Zhang M L, et al, 2023.Effects of seasonal rainfall characteristics on the hydrothermal state of permafrost active layer in the central Qinghai-Xizang (Tibet) Plateau[J].Plateau Meteorology42(5): 1172-1181.DOI: 10.7522/j.issn.1000-0534.2023.00017 .
Outlines

/