null | Baldocchi D, Falge E, Gu L, et al, 2001.Fluxnet: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities[J]. Bulletin of the American Meteorological Society, 82: 2415-2434.DOI: 10.1175/1520-0477(2001)082<2415: FANTTS>2.3.CO; 2 . |
null | Chen W, Wang S, Wang J, et al, 2023.Evidence for widespread thermal optimality of ecosystem respiration[J].Nature Ecology & Evolution, 7: 1379-1387. |
null | Dai H, Huang G, Zeng H, et al, 2022.PM 2.5 volatility prediction by XGBoost-MLP based on GARCH models[J]. Journal of Cleaner Production, 356: 131898.DOI: 10.1016/j.jclepro. 2022.131898 . |
null | Diao Y, Huang J, Liu C, et al, 2015.A modeling study of CO 2 flux and concentrations over the Yangtze River delta using the WRF-GHG Model[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39(5): 849-860.DOI: 10.3878/j.issn.1006-9895. 1409.14127 . |
null | Duan Z, Gao Z, Xu Q, et al, 2022.A benchmark dataset of diurnal- and seasonal-scale radiation, heat, and CO 2 fluxes in a typical East Asian monsoon region[J]. Earth System Science Data, 14: 4153-4169.DOI: 10.5194/essd-14-4153-2022 . |
null | Duan Z, Yang Y, Zhou S, et al, 2021.Estimating gross primary productivity (GPP) over rice-wheat-rotation croplands by using the random forest model and eddy covariance measurements: upscaling and comparison with the MODIS product[J]. Remote Sensing, 13: 4229.DOI: 10.3390/rs13214229 . |
null | Fernández-Martínez M, Sardans J, Chevallier F, et al, 2019.Global trends in carbon sinks and their relationships with CO 2 and temperature[J]. Nature Climate Change, 9: 73-79.DOI: 10.1038/s41558-018-0367-7 . |
null | Fukai S, Cooper M, 1995.Development of drought-resistant cultivars using physiomorphological traits in rice[J]. Field Crops Research, 40: 67-86.DOI: 10.1016/0378-4290(94)00096-U . |
null | Huang N, Wang L, Zhang Y, et al, 2021.Estimating the net ecosystem exchange at global FLUXNET sites using a random forest model[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14: 9826-9836.DOI: 10.1109/JSTARS.2021.3114190 . |
null | IPCC, 2023.Future global climate: scenario-based projections and near-term information[R].Climate Change 2021-The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge University Press, Cambridge, 553-672.DOI: 10. 1017/9781009157896.006 . |
null | Jiang F, Chen J M, Zhou L, et al, 2016.A comprehensive estimate of recent carbon sinks in China using both top-down and bottom-up approaches[J]. Scientific Reports, 6: 22130.DOI: 10.1038/srep22130 . |
null | Liang W, Zhang W, Jin Z, et al, 2019.Estimation of global grassland net ecosystem carbon exchange using a model tree ensemble approach[J]. Journal of Geophysical Research: Biogeosciences, 125(1).DOI: 10.1029/2019JG005034 . |
null | Long R R, 1976.Relation between nusselt number and rayleigh number in turbulent thermal convection[J]. Journal of Fluid Mechanics, 73(3): 445-451.DOI: 10.1017/S0022112076001444 . |
null | Lü F C, Ma J Y, Cao Y, al et, 2022.Carbon fluxes simulation of China's typical forest ecosystem based on FORCCHN model[J]. Acta Ecologica Sinica, 2022, 42(7): 2810-2821.DOI: 10. 5846/stxb202102070399 . |
null | Piao S, Ito A, Li S, et al, 2012.The carbon budget of terrestrial ecosystems in East Asia over the last two decades[J]. Biogeosciences, 9: 3571-3586.DOI: 10.5194/bg-9-3571-2012 . |
null | Qi C R, Su H, Nie?ner M, et al, 2016.Volumetric and multi-view CNNs for object classification on 3D data[J]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 5648-5656.DOI: 10.1109/CVPR.2016.609 . |
null | Qi Y, Wei D, Zhao H, et al, 2021.Carbon sink of a very high marshland on the Tibetan Plateau[J]. Journal of Geophysical Research: Biogeosciences, 126(4).DOI: 10.1029/2020JG006235 . |
null | Saxe A M, Mcclelland J L, Ganguli S J C S, et al, 2014.Exact solutions to the nonlinear dynamics of learning in deep linear neural networks[J] Computer Science, 1-22.DOI: 10.48550/arXiv. 1312.6120 . |
null | Shi Z, Crowell S, Luo Y, et al, 2018.Model structures amplify uncertainty in predicted soil carbon responses to climate change[J]. Nature Communications, 9: 2171.DOI: 10.1038/s41467-018-04526-9 . |
null | Tang X, Zhao X, Bai Y, et al, 2018.Carbon pools in China’s terrestrial ecosystems: new estimates based on an intensive field survey[J]. Proceedings of the National Academy of Sciences, 115(12): 4021-4026.DOI: 10.1073/pnas.1700291115 . |
null | Werner V V, Schneider A J A, Dos S C R, et al, 2023.Imbalanced data preprocessing techniques for machine learning: a systematic mapping study[J]. Knowledge and Information Systems, 65: 31-57.DOI: 10.1007/s10115-022-01772-8 . |
null | Yang Y, Li T, Pokharel P, et al, 2022.Global effects on soil respiration and its temperature sensitivity depend on nitrogen addition rate[J]. Soil Biology and Biochemistry, 174: 108814.DOI: 10. 1016/j.soilbio.2022.108814 . |
null | Yao Y, Li Z, Wang T, et al, 2018.A new estimation of China’s net ecosystem productivity based on eddy covariance measurements and a model tree ensemble approach[J]. Agricultural and Forest Meteorology, 253-254: 84-93.DOI: 10.1016/j.agrformet. 2018.02.007 . |
null | Zeng J, Matsunaga T, Tan Z-H, et al, 2020.Global terrestrial carbon fluxes of 1999-2019 estimated by upscaling eddy covariance data with a random forest[J]. Scientific Data, 7(1): 313.DOI: 10. 1038/s41597-020-00653-5 . |
null | Zhang W, Luo G, Yuan X, et al, 2023.New data-driven method for estimation of net ecosystem carbon exchange at meteorological stations effectively increases the global carbon flux data[J]. Methods in Ecology and Evolution, 14(9): 2449-2463.DOI: 10. 1111/2041-210X.14188 . |
null | Zhou Q, Fellows A, Flerchinger G N, et al, 2019.Examining interactions between and among predictors of net ecosystem exchange: a machine learning approach in a semi-arid landscape[J]. Scientific Reports, 9(1): 2222.DOI: 10.1038/s41598-019-38639-y . |
null | |
null | Yu X D, Gao X H, et al, 2004.A new method for non-linear classify and non-linear regression I: Introduction to support vector machine[J]. Journal of Applied Meteorological Science, 15(3): 345-354.DOI: 10.3969/j.issn.1001-7313.2004.03.012 . |
null | |
null | Wei Z G, Wang H, 2023.Relationship between CO 2 flux, photosynthetically active radiation and meteorological factors in evergreen broad-leaved forest in the Phoenix Mountain area of Zhuhai[J]. Plateau Meteorology, 42(3): 795-808.DOI: 10.7522/j.issn.1000-0534.2022.00051 . |
null | |
null | Yi Y, Kang H Z, et al, 2019.Temporal and spatial variations of land use and the driving factors in the middle reaches of the Yangtze River in the past 25 years[J]. Acta Ecologica Sinica, 39(6): 1877-1886.DOI: 10.5846/stxb201809302138 . |
null | |
null | Wang L, Du Q, 2018.An overview of recent studies on atmospheric boundary layer physics (2012-2017)[J]. Chinese Journal of Atmospheric Sciences, 42(4): 823-832.DOI: 10.3878/j.issn.1006-9895.1802.17274 . |
null | |
null | Zhang H, Kong L H, al et, 2023.An overview of terrestrial ecosystem carbon sink assessment methods towards achieving carbon neutrality in China[J]. Acta Ecologica Sinica, 43(10): 4294-4307.DOI: 10.5846/stxb202204020842 . |
null | |
null | Wang J, Che K, et al, 2021.Satellite remote sensing of greenhouse gases: progress and trends[J]. National Remote Sensing Bulletin, 25(1): 53-64 DOI: 10.11834/jrs.20210081 . |
null | |
null | Zhang Y P, Tan Z H, et al, 2010.Net photosynthesis and its affecting factors in a tropical seasonal rainforest ecosystem in Southwest China[J]. Journal of Applied Meteorological Science, 12: 8.DOI: http: //ir.xtbg.org.cn/handle/353005/1010 . |
null | 孙敏洁, 刘维红, 林茂松, 2009.温度和湿度及水稻不同生育期对水稻干尖线虫垂直迁移的影响[J].中国水稻科学, 23(3): 304-308. |
null | Sun M J, Liu W H, Lin M S, 2009.Effects of temperature, humidity and different growth stages of rice on the vertical migration of aphelenchoides besseyi[J].Chinese Journal of Rice Science, 23(3): 304-308. |
null | |
null | Zhang Z, Zhang J, et al, 2018.The effect of terrain factors on rice production: a case study in Hunan Province[J]. Acta Geographica Sinica, 73(9): 1792-1808.DOI: 10.11821/dlxb201809014 . |
null | 王玺洋, 于东升, 廖丹, 等, 2016.长三角典型水稻土有机碳组分构成及其主控因子[J].生态学报, 36(15): 4729-4738. |
null | Wang X Y, Yu D S, Liao D, et al, 2016.Characteristics of typical paddy soil organic carbon fractions and their main control factors in the Yangtze River Delta[J].Acta Ecologica Sinica, 36(15): 4729-4738. |
null | |
null | Xiao A, Nie D Y, 2023.Observation based deep learning model for short-duration heavy rain nowcasting[J]. Plateau Meteorology, 42(4): 1005-1017.DOI: 10.7522/j.issn.1000-0534.2022.00046 . |
null | 叶宇辰, 陈海山, 朱司光, 等, 2024.基于机器学习的中国夏季降水延伸期预报及土壤湿度的可能贡献[J].高原气象, 43(1): 184-198. |
null | doi: 10.7522/j.issn.1000-0534.2023.00025.Ye Y C, Chen H S, Zhu S G, et al, 2024.Machine learning-based prediction of summer extended-range precipitation and possible contribution of soil moisture over China[J]. Plateau Meteorology, 43(1): 184-198.DOI: 10.7522/j.issn.1000-0534.2023.00025 . |
null | |
null | Zhang Z Y, Zhang R D, 2018.Temperature sensitivity of photosynthesis and respiration in terrestrial ecosystems globally[J]. Acta Ecologica Sinica, 38(23): 8392-8399.DOI: 10.5846/stxb201801100071 . |
null | |
null | Zhang L M, Sun X M, 2014.Progresses and prospects of Chinese terrestrial ecosystem flux observation and research network (ChinaFLUX)[J]. Progress in Geography, 33(7): 903-917.DOI: 10.11820/dlkxjz.2014.07.005 . |
null | |
null | Xie G D, Zhen L, et al, 2011.Estimates of variation in Chinese terrestrial carbon storage under an environmental conservation policy scenario for 2000-2025[J]. Journal of Resources and Ecology, 2(4): 315-321.DOI: 10.3969/j.issn.1674-764x.2011.04.004 . |
null | |
null | Liu Y X, Zhang X Y, 2022.A review of research advances on carbon sinks in farmland ecosystems[J]. Acta Ecologica Sinica, 42(23): 9405-9416.DOI: 10.5846/stxb202203280762 . |
null | |
null | Ma Y M, Hu Z Y, et al, 2015.Net ecosystem carbon dioxide exchange in alpine meadow of Nagchu Region over Qinghai-Xizang Plateau[J]. Plateau Meteorology, 34(5): 1217-1223.DOI: 10.7522/j.issn.1000-0534.2014.00135 . |