Influence of WRF-Lake Model on Summer Atmospheric Boundary Layer Simulation in Nam Co Lake Area under Different Subgrid Parameterization Schemes

  • Ziyi WANG ,
  • Xianyu YANG ,
  • Yaqiong Lü ,
  • Xianhong MENG ,
  • Lihuan WANG
Expand
  • 1. College of Atmospheric Sciences,Chengdu University of Information Technology / Sichuan Key Laboratory of Plateau Atmosphere and Environment,Chengdu 610225,Sichuan,China
    2. Institute of Mountain Hazards and Environment,Chinese Academy of Sciences,Chengdu 610299,Sichuan,China
    3. Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions,Northwest Institute of Eco- Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,Gansu,China
    4. University of Chinese Academy of Sciences,Beijing 100049,China

Received date: 2023-09-25

  Revised date: 2024-03-27

  Online published: 2024-03-27

Abstract

In this study, the improvements of lake dynamic module parameters in the literature were added to WRF-Lake (WRF4.4.1) at first, then six microphysical schemes, five cumulus convection schemes and two boundary layer schemes were selected.A total of 60 WRF-Lake simulations with different parameterization schemes were carried out from July 5 to 13, 2008 in the Nam Co Lake area.Sensitivity experiments were conducted to comparatively analyze the effects of different parameterization scheme combinations on atmospheric boundary layer variables.The "ranking method" was employed to comprehensively evaluate the simulation capabilities of different parameterization schemes in the summer atmospheric boundary layer over Nam Co Lake.The results indicated that the model captures the overall spatial and temporal distribution characteristics of the summer average two-meter temperature in Nam Co.However, the simulated values of the two-meter temperature over the lake were higher than the land surface data.Due to the selection of cumulus convection parameterization schemes and the impact of model performance, there was significant differentiation in the simulation effects of precipitation among experimental groups, leading to varying degrees of overestimation of daily precipitation.The daily average variations of latent heat fluxes showed the best correlation with observational values, while sensible heat and wind direction exhibited relatively good performance, and wind speed showed the least satisfactory results.Overall, comprehensive analysis of the simulation capabilities of each experimental group for the summer atmospheric boundary layer over Nam Co Lake revealed that Scheme 58 (SBU-Tiedtke-MYNN3) performed the best in simulations of 2 m temperature, daily precipitation, 10 m wind fields, and surface heat fluxes.The RMSE value for two-meter temperature and daily precipitation was 2.33 °C and 10.48 mm, respectively.The correlation coefficient for the daily average variation of 10 m wind speed was -0.41, and the ratio of standard deviations was 0.94.The correlation coefficient for the daily average variation of 10 m wind direction was 0.59, and the ratio of standard deviations was 0.73.The correlation coefficient for the daily average variation of sensible heat flux was 0.94, and the ratio of standard deviations was 1.89.The correlation coefficient for the daily average variation of latent heat flux was 0.89, and the ratio of standard deviations was 0.91.Therefore, it is recommended to use the aforementioned grid parameterization scheme for simulating the summer atmospheric boundary layer over the region of Lake Nam Co.

Cite this article

Ziyi WANG , Xianyu YANG , Yaqiong Lü , Xianhong MENG , Lihuan WANG . Influence of WRF-Lake Model on Summer Atmospheric Boundary Layer Simulation in Nam Co Lake Area under Different Subgrid Parameterization Schemes[J]. Plateau Meteorology, 2024 , 43(6) : 1416 -1432 . DOI: 10.7522/j.issn.1000-0534.2024.00045

References

null
Bonan G B1995.Sensitivity of a GCM simulation to inclusion of inland water surfaces[J].Journal of Climate8(11): 2691-2704.DOI: 10.1175/1520-0442(1995)008<2691: SOAGST>2.0.CO; 2 .
null
Brunke M A Fairall C W Zeng X, et al, 2003.Which bulk aerodynamic algorithms are least problematic in computing ocean surface turbulent fluxes?[J].Journal of Climate16(4).DOI: 10.1175/1520-0442(2003)016<0619: WBAAAL>2.0.CO; 2 .
null
Cossu F Hocke K2013.Influence of microphysical schemes on atmospheric water in the weather research and forecasting model[J].Geoscientific Model Development Discussions, DOI: 10. 5194/gmdd-6-4563-2013 .
null
Dai Y F Wang L Yao T D, et al, 2018a.Observed and simulated lake effect precipitation over the Tibetan Plateau: an initial study at Nam Co Lake[J].Journal of Geophysical Research-Atmospheres123(13): 6746-6759.DOI: 10.1029/2018JD028330 .
null
Dai Y Yao T D Li X Y, et al, 2018b.The impact of lake effects on the temporal and spatial distribution of precipitation in the Nam Co basin, Tibetan Plateau[J].Quaternary International475(May 10): 63-69.DOI: 10.1016/j.quaint.2016.01.075 .
null
Decker M Brunke M A Wang Z, et al, 2012.Evaluation of the reanalysis products from GSFC, NCEP, and ECMWF using flux tower observations[J].Journal of Climate25(6).DOI: 10.1175/JCLI-D-11-00004.1 .
null
Fang X Stefan H G1996.Long-term lake water temperature and ice cover simulations/measurements[J].Cold Regions Science & Technology24(3): 289-304.DOI: 10.1016/0165-232X(95)00019-8 .
null
Gerken T Biermann T Babel W, et al, 2014.A modelling investigation into lake-breeze development and convection triggering in the Nam Co Lake basin, Tibetan Plateau[J].Theoretical and Applied Climatology117(1-2): 149-167.DOI: 10.1007/s00704-013-0987-9 .
null
Goudsmit G H Burchard H Peeters F, et al, 2002.Application of k-? turbulence models to enclosed basins: the role of internal seiches[J].Journal of Geophysical Research: Oceans,DOI: 10.1029/2001JC000954 .
null
Gu H P Jin J M Wu Y H, et al, 2015.Calibration and validation of lake surface temperature simulations with the coupled WRF-lake model[J].Climatic Change129(3-4): 471-483.DOI: 10. 1007/s10584-013-0978-y .
null
Gula J Peltier W R2012.Dynamical downscaling over the Great Lakes basin of North America using the WRF regional climate model: The impact of the Great Lakes system on regional greenhouse warming[J].Journal of Climate25(21): 7723-7742.DOI: 10.1175/JCLI-D-11-00388.1 .
null
Haginoya S Fujii H Kuwagata T, et al, 2009.Air-lake interaction features found in heat and water exchanges over Nam Co on the Tibetan Plateau[J].Sola5(1): 172-175.DOI: 10.2151/sola.2009-044 .
null
Hostetler S W Bartlein P J1990.Simulation of lake evaporation with application to modeling lake level variations of Harney-Malheur Lake, Oregon[J].Water Resources Research26(10): 2603-2612.DOI: 10.1029/WR026i010p02603 .
null
Huang A N, Lazhu, Wang J B, et al, 2019.Evaluating and improving the performance of three 1-D Lake Models in a large deep lake of the Central Tibetan Plateau[J].Journal of Geophysical Research:Atmospheres124(6): 3143-3167.DOI: 10.1029/2018JD029610 .
null
Humphries U Kaewmesri P Wangwongchai A, et al, 2017.The Simulation of heavy rainfall events over thailand using microphysics schemes in weather research and forecasting (WRF) Model[J].World Applied Sciences Journal35 (2): 310-315, 2017.DOI: 10.5829/idosi.wasj.2017.310.315 .
null
Kuang X X Jiao J J2016.Review on climate change on the Tibetan Plateau during the last half century[J].Journal of Geophysical Research-Atmospheres121(8): 3979-4007.DOI: 10.1002/2015JD024728 .
null
Li M Ma Y Hu Z, et al, 2009.Snow distribution over the Namco lake area of the Tibetan Plateau[J].Hydrology and Earth System Sciences13(11): 2023-2030.DOI: 10.5194/hess-13-2023-2009 .
null
Li X Y Ma Y J Huang Y M, et al, 2016.Evaporation and surface energy budget over the largest high-altitude saline lake on the Qinghai-Tibet Plateau[J].Journal of Geophysical Research121(18): 10470-10485.DOI: 10.1002/2016JD025027 .
null
Lin Y L Brian A C2011.A new bulk microphysical scheme that includes riming intensity and temperature-dependent ice characteristics[J].Monthly Weather Review139(3): 1013-1035.DOI: 10.1175/2010MWR3293.1 .
null
Ling X L Tang Z Y Gao J, et al, 2024.Changes in Qinghai Lake Area and their interactions with climatic factors[J].Remote Sensing16(1): 129.DOI: 10.3390/rs16010129 .
null
Liu X D Chen B D2000.Climatic warming in the Tibetan Plateau during recent decades[J].International Journal of Climatology20(14): 1729-1742.DOI: 10.1002/1097-0088(20001130)20: 14<1729: : AID-JOC556>3.0.CO; 2-Y .
null
Mallard M S Nolte C G Spero T L, et al, 2015.Technical challenges and solutions in representing lakes when using WRF in downscaling applications[J].Geoscientific Model Development8(4): 1085-1096.DOI: 10.5194/gmd-8-1085-2015 .
null
Mironov D Heise E Kourzeneva E, et al, 2010.Implementation of the lake parameterisation scheme FLake into the numerical weather prediction model COSMO[J].Boreal Environment Research15(2): 218-230.DOI: 10.1332/204080511X560639 .
null
Mironovy D V2008.Parameterization of Lakes in Numerical Weather Prediction.Description of a Lake Model[J].
null
Perroud M Goyette S Martynov A, et al, 2009.Simulation of multiannual thermal profiles in deep Lake Geneva: a comparison of one-dimensional lake models[J].Limnology and Oceanography54(5): 1574-1594.DOI: 10.4319/lo.2009.54.5.1574 .
null
Rajeevan M Kesarkar A Thampi S B, et al, 2010.Sensitivity of WRF cloud microphysics to simulations of a severe thunderstorm event over Southeast India[J].Annales Geophysicae28(2): 603-619.DOI: 10.5194/angeo-28-603-2010 .
null
Shi Y Huang A N Ma W Q, et al, 2022.Drivers of warming in Lake Nam Co on Tibetan Plateau over the past 40 years[J].Journal of Geophysical Research-Atmospheres127(16).DOI: 10. 1029/2021JD036320 .
null
Stepanenko V M Lykossov V N2005.Numerical modeling of heat and moisture transfer processes in a system lake-soil[J].Russian Meteorology and Hydrology, (3): 95-104.
null
Stepanenko V M Machul’skaya E E Glagolev M V, et al, 2011.Numerical modeling of methane emissions from lakes in the permafrost zone[J].Izvestiya, Atmospheric and Oceanic Physics47(2).DOI: 10.1134/S0001433811020113 .
null
Stepanenko V M Martynov A Johnk K D, et al, 2013.A one-dimensional model intercomparison study of thermal regime of a shallow, turbid midlatitude lake[J].Geoscientific Model Development6(4): 1337-1352.DOI: 10.5194/gmd-6-1337-2013 .
null
Subin Z M Riley W J Mironov D2012.An improved lake model for climate simulations: Model structure, evaluation, and sensitivity analyses in CESM1[J].Journal of Advances in Modeling Earth Systems, 4(2): n/a-n/a.DOI: 10.1029/2011MS000072 .
null
Taylor K E2001.Summarizing multiple aspects of model performance in a single diagram[J].Journal of Geophysical Research: Atmospheres, 106(D7).DOI: 10.1029/2000JD900719 .
null
Wan W Long D Hong Y, et al, 2016.A lake data set for the Tibetan Plateau from the 1960s, 2005, and 2014[J]. Entific Data3(1): 160039.DOI: 10.1038/sdata.2016.39 .
null
Wang A H Zeng X B2012.Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau[J].Journal of Geophysical Research, 117(D5).DOI: 10.1029/2011JD016553 .
null
Wang B B Ma Y M Wang Y, et al, 2019.Significant differences exist in lake-atmosphere interactions and the evaporation rates of high-elevation small and large lakes[J].Journal of Hydrology, 573: 220-234.DOI: 10.1016/j.jhydrol.2019.03.066 .
null
Wang J B Zhu L P Daut G, et al, 2009.Investigation of bathymetry and water quality of Lake Nam Co, the largest lake on the central Tibetan Plateau, China[J].Limnology10(2): 149-158.DOI: 10.1007/s10201-009-0266-8 .
null
Wang L M Wang J X Wang L C, et al, 2023.Lake evaporation and its effects on basin evapotranspiration and lake water storage on the Inner Tibetan Plateau[J].Water Resources Research59(10).DOI: 10.1029/2022WR034030 .
null
Wang W2022.Forecasting Convection with a “Scale-Aware” tiedtke cumulus parameterization scheme at kilometer scales[J].Weather and Forecasting, 37, 1491-1507.DOI: https: //doi.org/10.1175/WAF-D-21-0179.1 .
null
Wen L J Lv S H Zhao Z G, et al, 2015.Impacts of the Two biggest lakes on local temperature and precipitation in the Yellow River Source Region of the Tibetan Plateau[J].Advances in Meteorology, 2015(Pt.1): 1-10.DOI: 10.1155/2015/248031 .
null
Wu Y Huang A N, Lazhu, et al, 2020.Improvements of the coupled WRF-Lake model over Lake Nam Co, Central Tibetan Plateau[J].Climate Dynamics55(9-10): 2703-2724.DOI: 10.1007/s00382-020-05402-3 .
null
Xiao C L Lofgren B M Wang J, et al, 2016.Improving the lake scheme within a coupled WRF-lake model in the Laurentian Great Lakes[J].Journal of Advances in Modeling Earth Systems8(4): 1969-1985.DOI: 10.1002/2016MS000717 .
null
Yeates P S Imberger J2003.Pseudo two-dimensional simulations of internal and boundary fluxes in stratified lakes and reservoirs[J].International Journal of River Basin Management1(4): 297-319.DOI: 10.1080/15715124.2003.9635214 .
null
Zhang G Q Yao T D Zheng W F, et al, 2019.Regional differences of lake evolution across China during 1960s-2015 and its natural and anthropogenic causes[J].Remote Sensing of Environment, 221.DOI: 10.1016/j.rse.2018.11.038 .
null
Zhao Z Z Huang A N Ma W Q, et al, 2022.Effects of Lake Nam Co and surrounding terrain on extreme precipitation over Nam Co Basin, Tibetan Plateau: A Case Study[J].Journal of Geophysical Research: Atmospheres127(10).DOI: 10.1029/2021JD036190 .
null
Zhou X, Lazhu, Yao X N, et al, 2023.Understanding two key processes associated with alpine lake ice phenology using a coupled atmosphere-lake model[J].Journal of Hydrology-Regional Studies, 46: 101334-101334.DOI: 10.1016/j.ejrh.2023.101334 .
null
Zhu L J Jin J M Liu X, et al, 2018.Simulations of the impact of lakes on local and regional climate over the Tibetan Plateau[J].Atmosphere-Ocean56(4): 230-239.DOI: 10.1080/07055900.2017.1401524 .
null
鲍艳, 王玉琦, 南素兰, 等, 2023.青藏高原植被对未来气候变暖的反馈[J].高原气象42(3): 553-563.DOI: 10.7522/j.issn.1000-0534.2021.00109.Bao Y
null
Wang Y Q Nan S L, et al, 2023.Response of vegetation over the Qinghai-Xizang Plateau to projected warming climate[J].Plateau Meteorology42(3): 553-563.DOI: 10.7522/j.issn.1000-0534.2021.00109 .
null
常亚茹, 张继贤, 韩文立, 等, 2022.利用Sentinel-1A数据的纳木错湖面月际变化监测[J].遥感信息37(2): 45-52.DOI: 10.3969/j.issn.1000-3177.2022.02.006.Chang Y R
null
Zhang J F Han W L, et al, 2022.Monitoring inter-monthly change of Namtso Lake surface using sentinel-1A data[J].Remote Sensing Information37(2): 45-52.DOI: 10.3969/j.issn.1000-3177.2022.02.006 .
null
陈锋, 康世昌, 张拥军, 等, 2009.纳木错流域冰川和湖泊变化对气候变化的响应[J].山地学报27(6): 641-647.DOI: 10.3969/j.issn.1008-2786.2009.06.001.Chen F
null
Kang S C Zhang Y J, et al, 2019.Glaciers and lake change in response to climate change in the Nam Co Basin, Tibet[J].Journal of Mountain Science27(6): 641-647.DOI: 10.3969/j.issn.1008-2786.2009.06.001 .
null
德吉央宗, 强巴欧珠, 白玛央宗, 等, 2019.西藏纳木错湖泊面积变化对气候变化的响应[J].河南科技672(10): 133-136.DOI: 10.3969/j.issn.1003-5168.2019.10.050.Deji Y C
null
Qiangba O Z Baima Y Z, et al, 2019.Response of Namtso Lake area change to climate change in Tibet[J].Henan Science and Technology672(10): 133-136.DOI: 10.3969/j.issn.1003-5168.2019.10.050 .
null
杜娟, 文莉娟, 苏东生, 2020.青藏高原不同深度湖泊无冰期湖气温差及湖表辐射与能量平衡特征模拟分析[J].高原气象39(6): 1181-1194.DOI: 10.7522/j.issn.1000-0534.2019.00133.Du J
null
Wen L J Su D S, et al, 2020.Analysis of simulated temperature difference between lake surface and air and energy balance of Three Alpine Lakes with different depths on the Qinghai-Xizang Plateau during the ice-free period[J].Plateau Meteorology39(6): 1181-1194.DOI: 10.7522/j.issn.1000-0534.2019.00133 .
null
方楠, 阳坤, 拉珠, 2017.WRF湖泊模型对青藏高原纳木错湖的适用性研究[J].高原气象36(3): 610-618.DOI: 10.7522/j.issn.1000-0534.2016.00038.Fang N
null
Yang K La Z2017.Research on the application of WRF-Lake modeling at Nam Co Lake on the Qinghai-Tibetan Plateau[J].Plateau Meteorology36(3): 610-618.DOI: 10.7522/j.issn.1000-0534.2016.00038 .
null
何友翔, 刘娟, 2021.2000—2020年纳木错的时空变化特征及其对气候变化的响应[J].甘肃地质30(3): 57-64.
null
He Y X Liu J2021.Spatial-temporal changes in Nam Co Lake from 2000 to 2020 and its impact on climate change[J].Gansu Geology30(3): 57-64.
null
李蒙, 严登华, 刘少华, 等, 2017.近40 年来纳木错水面面积及蓄水量变化特征[J].水电能源科学35(2): 41-43+52.DOI: CNKI: SUN: SDNY.0.2017-02-010.Li M
null
Yan D H Liu S H, et al, 2017.Variation characteristics of water surface area and water storage capacity of Namucuo Lake in recent 40 years[J].Water Resources and Power35(2): 41-43+52.DOI: CNKI: SUN: SDNY.0.2017-02-010 .
null
李治国, 2014. 近 50年气候变化背景下青藏高原冰川和湖泊变化(英文)[J].Journal of Resources and Ecology, 5(2): 123-131.DOI: 10.5814/j.issn.1674-764x.2014.02.004.Li Z G2014.Glacier and lake changes across the Tibetan Plateau during the Past 50 years of climate change[J].Journal of Resources and Ecology, 5(2): 123-131.DOI: 10.5814/j.issn.1674-764x. 2014.02.004 .
null
林思诺, 张茵驰, 孙劭, 等, 2023.WRF参数化方案与初始场对闽江流域暴雨模拟的敏感性研究[J].人民珠江44(10): 35-46+61.DOI: 10.3969/j.issn.1001-9235.2023.10.004.Lin S N
null
Zhang Y C Sun S, et al, 2023.Sensitivity study of WRF parameterization schemes and initial fields on rainstorm simulation in Minjiang River Basin[J].Pearl River44(10): 35-46+61.DOI: 10.3969/j.issn.1001-9235.2023.10.004 .
null
刘梦娟, 张旭, 陈葆德, 2018.边界层参数化方案在"灰色区域"尺度下的适用性评估[J].大气科学42(1): 18.DOI: 10.3878/j.issn.1006-9895.1704.16269.Liu M J
null
Zhang X Chen B J2018.Assessment of the suitability of planetary boundary layer schemes at "Grey Zone" resolutions[J].Chinese Journal of Atmospheric Sciences42(1): 18.DOI: 10.3878/j.issn.1006-9895.1704.16269 .
null
闾利, 张廷斌, 易桂花, 等, 2019.2000年以来青藏高原湖泊面积变化与气候要素的响应关系研究[J].湖泊科学31(2): 573-589.
null
Lv L Zhang Y B Yi F H, et al, 2019.Changes of lake areas and its response to the climatic factors in Tibetan Plateau since 2000[J].Journal of Lake Sciences31(2): 573-589.
null
吕雅琼, 马耀明, 李茂善, 等, 2008.青藏高原纳木错湖区大气边界层结构分析[J].高原气象27(6): 1205-1210.
null
Lv Y Q Ma Y M Li M S, et al, 2008.Study on characteristic of atmospheric boundary layer over Lake Namco Region, Tibetan Plateau[J].Plateau Meteorology27(6): 1205-1210.
null
马耀明2020.青藏高原地气相互作用过程高分辨率(逐小时)综合观测数据集(2005-2016)[Z].时空三极环境大数据平台.DOI: 10.11888/Meteoro.tpdc.270910.Ma Y, 2020.
null
A long-term dataset of integrated land-atmosphere interaction observations on the Tibetan Plateau2005-2016)[Z].A Big Earth Data Platform for Three Poles, DOI: 10.11888/Meteoro.tpdc.270910 .
null
牛瑞佳, 文莉娟, 王梦晓, 等, 2023.积雪和沙尘对冰封期青海湖辐射和温度的影响[J].高原气象42(4): 913-922.DOI: 10.7522/j.issn.1000-0534.2023.00021.Niu R J
null
Wen L J Wang M X, et al, 2023.Effects of snow and dust on radiation and temperature in Qinghai Lake during ice-covered period[J].Plateau Meteorology42(4): 913-922.DOI: 10.7522/j.issn.1000-0534.2023.00021 .
null
宋春桥, 叶庆华, 程晓, 2015.基于ICESat/CryoSat-2卫星测高及站点观测的纳木错湖水位趋势变化监测[J].科学通报60(21): 2048.
null
Song C J Ye Q H Cheng X2015.Shifts in water level variation of Namco in the central Tibetan Plateau from ICESat and CryoSat-2 altimetry and station observations[J].Chinese Science Bulletin60(21): 2048.
null
宋兴宇, 文莉娟, 李茂善, 等, 2020.不同湖泊模式对青藏高原典型湖泊适用性对比研究[J].高原气象39(2): 13.DOI: 10.7522/j.issn.1000-0534.2019.00102.Song X Y
null
Wen L J Li M S, et al, 2020.Comparative study on applicability of different lake models to typical Lakes in Qinghai-Tibetan Plateau[J].Plateau Meteorology39(2): 13.DOI: 10.7522/j.issn.1000-0534.2019.00102 .
null
苏东生, 文莉娟, 赵林, 等, 2019.青海湖夏秋季局地气候效应数值模拟研究[J].高原气象38(5): 944-958.DOI: 10.7522/j.issn.1000-0534.2018.00125.Su D S
null
Wen L J Zhao L, et al, 2019.Numerical simulation of seasonal local climate effect in Qinghai Lake[J].Plateau Meteorology38(5): 944-958.DOI: 10.7522/j.issn.1000-0534.2018.00125 .
null
汪远伟, 邬光剑, 2018.纳木错多圈层综合观测研究站气象观测数据(2005-2016)[Z].时空三极环境大数据平台.DOI: DOI: 10.11888/AtmosPhys.tpe.00000049.file.Wang Y W, Wu G J2018.Meteorological observation data from the integrated observation and research station of multiple spheres in Namco (2005-2016)[Z].A Big Earth Data Platform for Three Poles, DOI: 10.11888/AtmosPhys.tpe.00000049.file.
null
王晓君, 马浩, 2011.新一代中尺度预报模式(WRF)国内应用进展[J].地球科学进展26(11): 1191-1199.DOI: 10.11867/j.issn.1001-8166.2011.11.1191.Wang X J
null
Ma H2011.Progress of application of the Weather Research and Forecast(WRF) Model in China[J].Advances in Earth Science26(11): 1191-1199.DOI: 10.11867/j.issn.1001-8166.2011.11.1191 .
null
吴冰雪, 苗峻峰, 杨薇, 2023.边界层参数化对海南岛山地环流结构和湍流特征模拟的影响[J].地球物理学报66(5): 1888-1910.
null
Wu B X Miao J F Yang W2023.Impact of planetary boundary layer parameterizations on simulated mountain circulation structure and turbulence characteristics over the Hainan Island[J].Chinese Journal of Geophysics66(5): 1888-1910.
null
吴艳红, 郭立男, 范兰馨, 等, 2022.青藏高原纳木错湖冰物候变化遥感监测与模拟[J].遥感学报26(1): 193-200.DOI: 10.11834/jrs.20221288.Wu Y H
null
Guo L N Fan L X, et al, 2022.Lake ice phenology of the Nam Co at Tibetan Plateau: Remote sensing and modelling[J].National Remote Sensing Bulletin26(1): 193-200.DOI: 10.11834/jrs.20221288 .
null
许洁, 马耀明, 孙方林, 等, 2018.湖泊和上风向地形对纳木错地区秋季降水影响[J].高原气象37(6): 1535-1543.DOI: 10.7522/j.issn.1000-0534.2018.00054.Xu J
null
Ma Y M Sun F L, et al, 2018.Analysis of effects of lake and upstream orography on the precipitation in fall over Nam Co Area[J].Plateau Meteorology37(6): 1535-1543.DOI: 10.7522/j.issn.1000-0534.2018.00054 .
null
阳坤, 何杰, 2016.中国区域高时空分辨率地面气象要素驱动数据集(1979-2015)[Z].时空三极环境大数据平台.DOI: 10.3972/westdc.002.2014.db.Yang K, He J2016.China meteorological forcing dataset (1979-2015)[Z].A Big Earth Data Platform for Three Poles.DOI: 10.3972/westdc.002.2014.db.
null
杨显玉, 吕雅琼, 文军, 等, 2022.扎陵湖和鄂陵湖夏季典型地表水热交换特征的数值模拟[J].高原气象41(1): 143-152.DOI: 10.7522/j.issn.1000-0534.2020.00090.Yang X Y
null
Y Q Wen J, et al, 2002.Numerical simulation of typical characteristics of land surface water-heat exchange over Gyaring Lake and Ngoring Lake in Summer[J].Plateau Meteorology41(1): 143-152.DOI: 10.7522/j.issn.1000-0534.2020.00090 .
null
杨扬, 卢冰, 王薇, 等, 2021.基于WRF的积云对流参数化方案对中国夏季降水预报的影响研究[J].气象学报79(4): 612-625.DOI: 10.11676/qxxb2021.045.Yang Y
null
Bing L Wei W, et al, 2021.Impacts of cumulus parameterization schemes on the summertime precipitation forecast in China based on the WRF model[J].Acta Meteorologica Sinica79(4): 612-625.DOI: 10.11676/qxxb2021.045 .
null
朱立平, 谢曼平, 吴艳红, 2010.西藏纳木错1971~2004年湖泊面积变化及其原因的定量分析[J].科学通报55(18): 1789-1798.DOI: 10.1007/s11434-010-0015-8.Zhu L P
null
Xie M P Wu Y H2010.Quantitative analysis of lake area variations and the influence factors from 1971 to 2004 in the Nam Co basin of the Tibetan Plateau[J].Chinese Science Bulletin55(18): 1789-1798.DOI: 10.1007/s11434-010-0015-8 .
Outlines

/