null | |
null | |
null | Cossu F, Hocke K, 2013.Influence of microphysical schemes on atmospheric water in the weather research and forecasting model[J]. Geoscientific Model Development Discussions, DOI: 10. 5194/gmdd-6-4563-2013 . |
null | Dai Y F, Wang L, Yao T D, et al, 2018a.Observed and simulated lake effect precipitation over the Tibetan Plateau: an initial study at Nam Co Lake[J]. Journal of Geophysical Research-Atmospheres, 123(13): 6746-6759.DOI: 10.1029/2018JD028330 . |
null | Dai Y, Yao T D, Li X Y, et al, 2018b.The impact of lake effects on the temporal and spatial distribution of precipitation in the Nam Co basin, Tibetan Plateau[J]. Quaternary International, 475(May 10): 63-69.DOI: 10.1016/j.quaint.2016.01.075 . |
null | Decker M, Brunke M A, Wang Z, et al, 2012.Evaluation of the reanalysis products from GSFC, NCEP, and ECMWF using flux tower observations[J]. Journal of Climate, 25(6).DOI: 10.1175/JCLI-D-11-00004.1 . |
null | Fang X, Stefan H G, 1996.Long-term lake water temperature and ice cover simulations/measurements[J]. Cold Regions Science & Technology, 24(3): 289-304.DOI: 10.1016/0165-232X(95)00019-8 . |
null | Gerken T, Biermann T, Babel W, et al, 2014.A modelling investigation into lake-breeze development and convection triggering in the Nam Co Lake basin, Tibetan Plateau[J]. Theoretical and Applied Climatology, 117(1-2): 149-167.DOI: 10.1007/s00704-013-0987-9 . |
null | Goudsmit G H, Burchard H, Peeters F, et al, 2002.Application of k-? turbulence models to enclosed basins: the role of internal seiches[J]. Journal of Geophysical Research: Oceans,DOI: 10.1029/2001JC000954 . |
null | Gu H P, Jin J M, Wu Y H, et al, 2015.Calibration and validation of lake surface temperature simulations with the coupled WRF-lake model[J]. Climatic Change, 129(3-4): 471-483.DOI: 10. 1007/s10584-013-0978-y . |
null | Gula J, Peltier W R, 2012.Dynamical downscaling over the Great Lakes basin of North America using the WRF regional climate model: The impact of the Great Lakes system on regional greenhouse warming[J]. Journal of Climate, 25(21): 7723-7742.DOI: 10.1175/JCLI-D-11-00388.1 . |
null | Haginoya S, Fujii H, Kuwagata T, et al, 2009.Air-lake interaction features found in heat and water exchanges over Nam Co on the Tibetan Plateau[J]. Sola, 5(1): 172-175.DOI: 10.2151/sola.2009-044 . |
null | Hostetler S W, Bartlein P J, 1990.Simulation of lake evaporation with application to modeling lake level variations of Harney-Malheur Lake, Oregon[J]. Water Resources Research, 26(10): 2603-2612.DOI: 10.1029/WR026i010p02603 . |
null | Huang A N, Lazhu, Wang J B, et al, 2019.Evaluating and improving the performance of three 1-D Lake Models in a large deep lake of the Central Tibetan Plateau[J]. Journal of Geophysical Research:Atmospheres, 124(6): 3143-3167.DOI: 10.1029/2018JD029610 . |
null | Humphries U, Kaewmesri P, Wangwongchai A, et al, 2017.The Simulation of heavy rainfall events over thailand using microphysics schemes in weather research and forecasting (WRF) Model[J]. World Applied Sciences Journal, 35 (2): 310-315, 2017.DOI: 10.5829/idosi.wasj.2017.310.315 . |
null | Kuang X X, Jiao J J, 2016.Review on climate change on the Tibetan Plateau during the last half century[J]. Journal of Geophysical Research-Atmospheres, 121(8): 3979-4007.DOI: 10.1002/2015JD024728 . |
null | Li M, Ma Y, Hu Z, et al, 2009.Snow distribution over the Namco lake area of the Tibetan Plateau[J]. Hydrology and Earth System Sciences, 13(11): 2023-2030.DOI: 10.5194/hess-13-2023-2009 . |
null | Li X Y, Ma Y J, Huang Y M, et al, 2016.Evaporation and surface energy budget over the largest high-altitude saline lake on the Qinghai-Tibet Plateau[J]. Journal of Geophysical Research, 121(18): 10470-10485.DOI: 10.1002/2016JD025027 . |
null | Lin Y L, Brian A C, 2011.A new bulk microphysical scheme that includes riming intensity and temperature-dependent ice characteristics[J]. Monthly Weather Review, 139(3): 1013-1035.DOI: 10.1175/2010MWR3293.1 . |
null | Ling X L, Tang Z Y, Gao J, et al, 2024.Changes in Qinghai Lake Area and their interactions with climatic factors[J]. Remote Sensing, 16(1): 129.DOI: 10.3390/rs16010129 . |
null | |
null | Mallard M S, Nolte C G, Spero T L, et al, 2015.Technical challenges and solutions in representing lakes when using WRF in downscaling applications[J]. Geoscientific Model Development, 8(4): 1085-1096.DOI: 10.5194/gmd-8-1085-2015 . |
null | Mironov D, Heise E, Kourzeneva E, et al, 2010.Implementation of the lake parameterisation scheme FLake into the numerical weather prediction model COSMO[J]. Boreal Environment Research, 15(2): 218-230.DOI: 10.1332/204080511X560639 . |
null | Mironovy D V, 2008.Parameterization of Lakes in Numerical Weather Prediction.Description of a Lake Model[J]. |
null | Perroud M, Goyette S, Martynov A, et al, 2009.Simulation of multiannual thermal profiles in deep Lake Geneva: a comparison of one-dimensional lake models[J]. Limnology and Oceanography, 54(5): 1574-1594.DOI: 10.4319/lo.2009.54.5.1574 . |
null | Rajeevan M, Kesarkar A, Thampi S B, et al, 2010.Sensitivity of WRF cloud microphysics to simulations of a severe thunderstorm event over Southeast India[J]. Annales Geophysicae, 28(2): 603-619.DOI: 10.5194/angeo-28-603-2010 . |
null | Shi Y, Huang A N, Ma W Q, et al, 2022.Drivers of warming in Lake Nam Co on Tibetan Plateau over the past 40 years[J]. Journal of Geophysical Research-Atmospheres, 127(16).DOI: 10. 1029/2021JD036320 . |
null | Stepanenko V M, Lykossov V N, 2005.Numerical modeling of heat and moisture transfer processes in a system lake-soil[J].Russian Meteorology and Hydrology, (3): 95-104. |
null | Stepanenko V M, Machul’skaya E E, Glagolev M V, et al, 2011.Numerical modeling of methane emissions from lakes in the permafrost zone[J]. Izvestiya, Atmospheric and Oceanic Physics, 47(2).DOI: 10.1134/S0001433811020113 . |
null | Stepanenko V M, Martynov A, Johnk K D, et al, 2013.A one-dimensional model intercomparison study of thermal regime of a shallow, turbid midlatitude lake[J]. Geoscientific Model Development, 6(4): 1337-1352.DOI: 10.5194/gmd-6-1337-2013 . |
null | Subin Z M, Riley W J, Mironov D, 2012.An improved lake model for climate simulations: Model structure, evaluation, and sensitivity analyses in CESM1[J]. Journal of Advances in Modeling Earth Systems, 4(2): n/a-n/a.DOI: 10.1029/2011MS000072 . |
null | Taylor K E, 2001.Summarizing multiple aspects of model performance in a single diagram[J]. Journal of Geophysical Research: Atmospheres, 106(D7).DOI: 10.1029/2000JD900719 . |
null | Wan W, Long D, Hong Y, et al, 2016.A lake data set for the Tibetan Plateau from the 1960s, 2005, and 2014[J]. Entific Data, 3(1): 160039.DOI: 10.1038/sdata.2016.39 . |
null | Wang A H, Zeng X B, 2012.Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau[J]. Journal of Geophysical Research, 117(D5).DOI: 10.1029/2011JD016553 . |
null | Wang B B, Ma Y M, Wang Y, et al, 2019.Significant differences exist in lake-atmosphere interactions and the evaporation rates of high-elevation small and large lakes[J]. Journal of Hydrology, 573: 220-234.DOI: 10.1016/j.jhydrol.2019.03.066 . |
null | Wang J B, Zhu L P, Daut G, et al, 2009.Investigation of bathymetry and water quality of Lake Nam Co, the largest lake on the central Tibetan Plateau, China[J]. Limnology, 10(2): 149-158.DOI: 10.1007/s10201-009-0266-8 . |
null | Wang L M, Wang J X, Wang L C, et al, 2023.Lake evaporation and its effects on basin evapotranspiration and lake water storage on the Inner Tibetan Plateau[J]. Water Resources Research, 59(10).DOI: 10.1029/2022WR034030 . |
null | Wang W, 2022.Forecasting Convection with a “Scale-Aware” tiedtke cumulus parameterization scheme at kilometer scales[J]. Weather and Forecasting, 37, 1491-1507.DOI: https: //doi.org/10.1175/WAF-D-21-0179.1 . |
null | Wen L J, Lv S H, Zhao Z G, et al, 2015.Impacts of the Two biggest lakes on local temperature and precipitation in the Yellow River Source Region of the Tibetan Plateau[J]. Advances in Meteorology, 2015(Pt.1): 1-10.DOI: 10.1155/2015/248031 . |
null | Wu Y, Huang A N, Lazhu, et al, 2020.Improvements of the coupled WRF-Lake model over Lake Nam Co, Central Tibetan Plateau[J]. Climate Dynamics, 55(9-10): 2703-2724.DOI: 10.1007/s00382-020-05402-3 . |
null | Xiao C L, Lofgren B M, Wang J, et al, 2016.Improving the lake scheme within a coupled WRF-lake model in the Laurentian Great Lakes[J]. Journal of Advances in Modeling Earth Systems, 8(4): 1969-1985.DOI: 10.1002/2016MS000717 . |
null | Yeates P S, Imberger J, 2003.Pseudo two-dimensional simulations of internal and boundary fluxes in stratified lakes and reservoirs[J]. International Journal of River Basin Management, 1(4): 297-319.DOI: 10.1080/15715124.2003.9635214 . |
null | Zhang G Q, Yao T D, Zheng W F, et al, 2019.Regional differences of lake evolution across China during 1960s-2015 and its natural and anthropogenic causes[J]. Remote Sensing of Environment, 221.DOI: 10.1016/j.rse.2018.11.038 . |
null | Zhao Z Z, Huang A N, Ma W Q, et al, 2022.Effects of Lake Nam Co and surrounding terrain on extreme precipitation over Nam Co Basin, Tibetan Plateau: A Case Study[J]. Journal of Geophysical Research: Atmospheres, 127(10).DOI: 10.1029/2021JD036190 . |
null | Zhou X, Lazhu, Yao X N, et al, 2023.Understanding two key processes associated with alpine lake ice phenology using a coupled atmosphere-lake model[J]. Journal of Hydrology-Regional Studies, 46: 101334-101334.DOI: 10.1016/j.ejrh.2023.101334 . |
null | Zhu L J, Jin J M, Liu X, et al, 2018.Simulations of the impact of lakes on local and regional climate over the Tibetan Plateau[J]. Atmosphere-Ocean, 56(4): 230-239.DOI: 10.1080/07055900.2017.1401524 . |
null | |
null | Wang Y Q, Nan S L, et al, 2023.Response of vegetation over the Qinghai-Xizang Plateau to projected warming climate[J]. Plateau Meteorology, 42(3): 553-563.DOI: 10.7522/j.issn.1000-0534.2021.00109 . |
null | |
null | Zhang J F, Han W L, et al, 2022.Monitoring inter-monthly change of Namtso Lake surface using sentinel-1A data[J]. Remote Sensing Information, 37(2): 45-52.DOI: 10.3969/j.issn.1000-3177.2022.02.006 . |
null | |
null | Kang S C, Zhang Y J, et al, 2019.Glaciers and lake change in response to climate change in the Nam Co Basin, Tibet[J]. Journal of Mountain Science, 27(6): 641-647.DOI: 10.3969/j.issn.1008-2786.2009.06.001 . |
null | |
null | Qiangba O Z, Baima Y Z, et al, 2019.Response of Namtso Lake area change to climate change in Tibet[J]. Henan Science and Technology, 672(10): 133-136.DOI: 10.3969/j.issn.1003-5168.2019.10.050 . |
null | |
null | Wen L J, Su D S, et al, 2020.Analysis of simulated temperature difference between lake surface and air and energy balance of Three Alpine Lakes with different depths on the Qinghai-Xizang Plateau during the ice-free period[J]. Plateau Meteorology, 39(6): 1181-1194.DOI: 10.7522/j.issn.1000-0534.2019.00133 . |
null | |
null | Yang K, La Z, 2017.Research on the application of WRF-Lake modeling at Nam Co Lake on the Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 36(3): 610-618.DOI: 10.7522/j.issn.1000-0534.2016.00038 . |
null | 何友翔, 刘娟, 2021.2000—2020年纳木错的时空变化特征及其对气候变化的响应[J].甘肃地质, 30(3): 57-64. |
null | He Y X, Liu J, 2021.Spatial-temporal changes in Nam Co Lake from 2000 to 2020 and its impact on climate change[J].Gansu Geology, 30(3): 57-64. |
null | |
null | Yan D H, Liu S H, et al, 2017.Variation characteristics of water surface area and water storage capacity of Namucuo Lake in recent 40 years[J]. Water Resources and Power, 35(2): 41-43+52.DOI: CNKI: SUN: SDNY.0.2017-02-010 . |
null | |
null | |
null | Zhang Y C, Sun S, et al, 2023.Sensitivity study of WRF parameterization schemes and initial fields on rainstorm simulation in Minjiang River Basin[J]. Pearl River, 44(10): 35-46+61.DOI: 10.3969/j.issn.1001-9235.2023.10.004 . |
null | |
null | Zhang X, Chen B J, 2018.Assessment of the suitability of planetary boundary layer schemes at "Grey Zone" resolutions[J]. Chinese Journal of Atmospheric Sciences, 42(1): 18.DOI: 10.3878/j.issn.1006-9895.1704.16269 . |
null | 闾利, 张廷斌, 易桂花, 等, 2019.2000年以来青藏高原湖泊面积变化与气候要素的响应关系研究[J].湖泊科学, 31(2): 573-589. |
null | Lv L, Zhang Y B, Yi F H, et al, 2019.Changes of lake areas and its response to the climatic factors in Tibetan Plateau since 2000[J].Journal of Lake Sciences, 31(2): 573-589. |
null | 吕雅琼, 马耀明, 李茂善, 等, 2008.青藏高原纳木错湖区大气边界层结构分析[J].高原气象, 27(6): 1205-1210. |
null | Lv Y Q, Ma Y M, Li M S, et al, 2008.Study on characteristic of atmospheric boundary layer over Lake Namco Region, Tibetan Plateau[J].Plateau Meteorology, 27(6): 1205-1210. |
null | 马耀明, 2020.青藏高原地气相互作用过程高分辨率(逐小时)综合观测数据集(2005-2016)[Z].时空三极环境大数据平台.DOI: 10.11888/Meteoro.tpdc.270910.Ma Y, 2020. |
null | A long-term dataset of integrated land-atmosphere interaction observations on the Tibetan Plateau ( 2005-2016)[Z].A Big Earth Data Platform for Three Poles, DOI: 10.11888/Meteoro.tpdc.270910 . |
null | |
null | Wen L J, Wang M X, et al, 2023.Effects of snow and dust on radiation and temperature in Qinghai Lake during ice-covered period[J]. Plateau Meteorology, 42(4): 913-922.DOI: 10.7522/j.issn.1000-0534.2023.00021 . |
null | 宋春桥, 叶庆华, 程晓, 2015.基于ICESat/CryoSat-2卫星测高及站点观测的纳木错湖水位趋势变化监测[J].科学通报, 60(21): 2048. |
null | Song C J, Ye Q H, Cheng X, 2015.Shifts in water level variation of Namco in the central Tibetan Plateau from ICESat and CryoSat-2 altimetry and station observations[J].Chinese Science Bulletin, 60(21): 2048. |
null | |
null | Wen L J, Li M S, et al, 2020.Comparative study on applicability of different lake models to typical Lakes in Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 39(2): 13.DOI: 10.7522/j.issn.1000-0534.2019.00102 . |
null | |
null | Wen L J, Zhao L, et al, 2019.Numerical simulation of seasonal local climate effect in Qinghai Lake[J]. Plateau Meteorology, 38(5): 944-958.DOI: 10.7522/j.issn.1000-0534.2018.00125 . |
null | 汪远伟, 邬光剑, 2018.纳木错多圈层综合观测研究站气象观测数据(2005-2016)[Z].时空三极环境大数据平台.DOI: DOI: 10.11888/AtmosPhys.tpe.00000049.file.Wang Y W, Wu G J, 2018.Meteorological observation data from the integrated observation and research station of multiple spheres in Namco (2005-2016)[Z].A Big Earth Data Platform for Three Poles, DOI: 10.11888/AtmosPhys.tpe.00000049.file. |
null | |
null | |
null | 吴冰雪, 苗峻峰, 杨薇, 2023.边界层参数化对海南岛山地环流结构和湍流特征模拟的影响[J].地球物理学报, 66(5): 1888-1910. |
null | Wu B X, Miao J F, Yang W, 2023.Impact of planetary boundary layer parameterizations on simulated mountain circulation structure and turbulence characteristics over the Hainan Island[J].Chinese Journal of Geophysics, 66(5): 1888-1910. |
null | |
null | Guo L N, Fan L X, et al, 2022.Lake ice phenology of the Nam Co at Tibetan Plateau: Remote sensing and modelling[J]. National Remote Sensing Bulletin, 26(1): 193-200.DOI: 10.11834/jrs.20221288 . |
null | |
null | Ma Y M, Sun F L, et al, 2018.Analysis of effects of lake and upstream orography on the precipitation in fall over Nam Co Area[J]. Plateau Meteorology, 37(6): 1535-1543.DOI: 10.7522/j.issn.1000-0534.2018.00054 . |
null | 阳坤, 何杰, 2016.中国区域高时空分辨率地面气象要素驱动数据集(1979-2015)[Z].时空三极环境大数据平台.DOI: 10.3972/westdc.002.2014.db.Yang K, He J, 2016.China meteorological forcing dataset (1979-2015)[Z].A Big Earth Data Platform for Three Poles.DOI: 10.3972/westdc.002.2014.db. |
null | |
null | Lü Y Q, Wen J, et al, 2002.Numerical simulation of typical characteristics of land surface water-heat exchange over Gyaring Lake and Ngoring Lake in Summer[J]. Plateau Meteorology, 41(1): 143-152.DOI: 10.7522/j.issn.1000-0534.2020.00090 . |
null | |
null | Bing L, Wei W, et al, 2021.Impacts of cumulus parameterization schemes on the summertime precipitation forecast in China based on the WRF model[J]. Acta Meteorologica Sinica, 79(4): 612-625.DOI: 10.11676/qxxb2021.045 . |
null | |
null | Xie M P, Wu Y H, 2010.Quantitative analysis of lake area variations and the influence factors from 1971 to 2004 in the Nam Co basin of the Tibetan Plateau[J]. Chinese Science Bulletin, 55(18): 1789-1798.DOI: 10.1007/s11434-010-0015-8 . |