null | Albergel C, De Rosnay P, Gruhier C, et al, 2012.Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations[J]. Remote Sensing of Environment, 118: 215-226.DOI: 10.1016/j.rse.2011.11.017 . |
null | Albergel C, Rüdiger C, Pellarin T, et al, 2008.From near-surface to root-zone soil moisture using an exponential filter: an assessment of the method based on in-situ observations and model simulations[J]. Hydrology and Earth System Sciences, 12(6): 1323-1337.DOI: 10.5194/hess-12-1323-2008 . |
null | Al-Hamdan O, Cruise J, 2010.Soil moisture profile development from surface observations by principle of maximum entropy[J]. Journal of Hydrologic Engineering, 15(5): 327-337.DOI: 10. 1061/(ASCE)HE.1943-5584.0000196 . |
null | Beck H E, Pan M, Miralles D G, et al, 2020.Evaluation of 18 satellite-and model-based soil moisture products using in situ measurements from 826 sensors[J]. Hydrology and Earth System Sciences Discussions, 25(1): 1-35.DOI: 10.5194/hess-25-17-2021 . |
null | Brocca L, Tarpanelli A, Filippucci P, et al, 2018.How much water is used for irrigation?A new approach exploiting coarse resolution satellite soil moisture products[J]. International Journal of Applied Earth Observation and Geoinformation, 73: 752-766.DOI: 10.1016/j.jag.2018.08.023 . |
null | Ceballos A, Scipal K, Wagner W, et al, 2005.Validation of ERS scatterometer‐derived soil moisture data in the central part of the Duero Basin, Spain[J]. Hydrological Processes: An International Journal, 19(8): 1549-1566.DOI: 10.1002/hyp.5585 . |
null | Chen Y Y, Yang K, Qin J, et al, 2013.Evaluation of AMSR‐E retrievals and GLDAS simulations against observations of a soil moisture network on the central Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 118(10): 4466-4475.DOI: 10.1002/jgrd.50301 . |
null | Chen Y Y, Yang K, Qin J, et al, 2017.Evaluation of SMAP, SMOS, and AMSR2 soil moisture retrievals against observations from two networks on the Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 122(11): 5780-5792.DOI: 10.1002/2016jd026388 . |
null | Corradini C, 2014.Soil moisture in the development of hydrological processes and its determination at different spatial scales[J]. Journal of Hydrology, 516: 1-5.DOI: 10.1016/j.jhydrol.2014. 02.051 . |
null | De Lange R, Beck R, Van De Giesen N, et al, 2008.Scatterometer-derived soil moisture calibrated for soil texture with a one-dimensional water-flow model[J]. IEEE Transactions on Geoscience and Remote Sensing, 46(12): 4041-4049.DOI: 10.1109/TGRS.2008.2000796 . |
null | De Rosnay P, Balsamo G, Albergel C, et al, 2014.Initialisation of land surface variables for numerical weather prediction[J]. Surveys in Geophysics, 35(3): 607-621.DOI: 10.1007/s10712-012-9207-x . |
null | Dente L, Vekerdy Z, Wen J, et al, 2012.Maqu network for validation of satellite-derived soil moisture products[J]. International Journal of Applied Earth Observation and Geoinformation, 17: 55-65.DOI: 10.1016/j.jag.2011.11.004 . |
null | Ford T W, Harris E, Quiring S M, 2014.Estimating root zone soil moisture using near-surface observations from SMOS[J]. Hydrology and Earth System Sciences, 18(1): 139-154.DOI: 10. 5194/hess-18-139-2014 . |
null | Ge Y, Wang J H, Heuvelink G B, et al, 2015.Sampling design optimization of a wireless sensor network for monitoring ecohydrological processes in the Babao River basin, China[J]. International Journal of Geographical Information Science, 29(1): 92-110.DOI: 10.1080/13658816.2014.948446 . |
null | Grillakis M G, Koutroulis A G, Alexakis D D, et al, 2021.Regionalizing root‐zone soil moisture estimates from ESA CCI soil water index using machine learning and information on soil, vegetation, and climate[J]. Water Resources Research, 57(5): e2020WR029249.DOI: 10.1029/2020WR029249 . |
null | He J, Yang K, Tang W J, et al, 2020.The first high-resolution meteorological forcing dataset for land process studies over China[J]. Scientific Data, 7(1): 25.DOI: 10.1038/s41597-020-0369-y . |
null | Hengl T, de Jesus J M, MacMillan R A, et al, 2014.SoilGrids1km—global soil information based on automated mapping[J]. PloS One, 9(8): e105992.DOI: 10.1371/journal.pone.0105992 . |
null | Jin R, Li X, Yan B P, et al, 2014.A nested ecohydrological wireless sensor network for capturing the surface heterogeneity in the midstream areas of the Heihe River Basin, China[J]. IEEE Geoscience and Remote Sensing Letters, 11(11): 2015-2019.DOI: 10.1109/LGRS.2014.2319085 . |
null | Kang J, Jin R, Li X, et al, 2017.High spatio-temporal resolution mapping of soil moisture by integrating wireless sensor network observations and MODIS apparent thermal inertia in the Babao River Basin, China[J]. Remote Sensing of Environment, 191: 232-245.DOI: 10.1016/j.rse.2017.01.027 . |
null | Kumar S V, Reichle R H, Koster R D, et al, 2009.Role of subsurface physics in the assimilation of surface soil moisture observations[J]. Journal of Hydrometeorology, 10(6): 1534-1547.DOI: 10.1175/2009JHM1134.1 . |
null | Lakshmi V, Piechota T, Narayan U, et al, 2004.Soil moisture as an indicator of weather extremes[J]. Geophysical Research Letters, 31(11).DOI: 10.1029/2004GL019930 . |
null | Li F Q, Crow W T, Kustas W P, 2010.Towards the estimation root-zone soil moisture via the simultaneous assimilation of thermal and microwave soil moisture retrievals[J]. Advances in Water Resources, 33(2): 201-214.DOI: 10.1016/j.advwatres.2009. 11.007 . |
null | Liu S M, Li X, Xu Z W, et al, 2018.The Heihe Integrated Observatory Network: A basin‐scale land surface processes observatory in China[J]. Vadose Zone Journal, 17(1): 1-21.DOI: 10.2136/vzj2018.04.0072 . |
null | Ma Y M, Ma W Q, Zhong L, et al, 2017.Monitoring and Modeling the Tibetan Plateau’s climate system and its impact on East Asia[J]. Scientific Reports, 7(1): 1-6.DOI: 10.1038/srep44574 . |
null | Maggioni V, Reichle R H, Anagnostou E N, 2013.The efficiency of assimilating satellite soil moisture retrievals in a land data assimilation system using different rainfall error models[J]. Journal of Hydrometeorology, 14(1): 368-374.DOI: 10.1175/JHM-D-12-0105.1 . |
null | Mahmood R, Littell A, Hubbard K G, et al, 2012.Observed data-based assessment of relationships among soil moisture at various depths, precipitation, and temperature[J]. Applied Geography, 34: 255-264.DOI: 10.1016/j.apgeog.2011.11.009 . |
null | Mu?oz-Sabater J, Dutra E, Agustí-Panareda A, et al, 2021.ERA5-Land: a state-of-the-art global reanalysis dataset for land applications[J]. Earth System Science Data, 13(9): 4349-4383.DOI: 10.5194/essd-13-4349-2021 . |
null | Nash J E, Sutcliffe J V, 1970.River flow forecasting through conceptual models part I—A discussion of principles[J]. Journal of Hydrology, 10(3): 282-290.DOI: 10.1016/0022-1694(70)90255-6 . |
null | Pan X, Kornelsen K C, Coulibaly P, 2017.Estimating root zone soil moisture at continental scale using neural networks[J]. Journal of the American Water Resources Association, 53(1): 220-237.DOI: 10.1111/1752-1688.12491 . |
null | Qin J, Ding Y J, Wu J K, et al, 2013.Understanding the impact of mountain landscapes on water balance in the upper Heihe River watershed in northwestern China[J]. Journal of Arid Land, 5(3): 366-383.DOI: 10.1007/s40333-013-0162-2 . |
null | Su Z B, Wen J, Dente L, et al, 2011.The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and model products[J]. Hydrology and Earth System Sciences, 15(7): 2303-2316.DOI: 10.5194/hess-15-2303-2011 . |
null | Tian J, Han Z B, Bogena H R, et al, 2020.Estimation of subsurface soil moisture from surface soil moisture in cold mountainous areas[J]. Hydrology and Earth System Sciences, 24(9): 4659-4674.DOI: 10.5194/hess-24-4659-2020 . |
null | Tian J, Zhang Y Q, Guo J P, et al, 2022.Predicting root zone soil moisture using observations at 2121 sites across China[J]. Science of the Total Environment, 847: 157425.DOI: 10.1016/j.scitotenv.2022.157425 . |
null | Wagner W, Lemoine G, Rott H, 1999.A method for estimating soil moisture from ERS scatterometer and soil data[J]. Remote Sensing of Environment, 70(2): 191-207.DOI: 10.1016/S0034-4257(99)00036-X . |
null | Wang T J, Franz T E, You J S, et al, 2017.Evaluating controls of soil properties and climatic conditions on the use of an exponential filter for converting near surface to root zone soil moisture contents[J]. Journal of Hydrology, 548: 683-696.DOI: 10.1016/j.jhydrol.2017.03.055 . |
null | Xu Z P, Man X L, Duan L L, et al, 2022.Improved subsurface soil moisture prediction from surface soil moisture through the integration of the (de) coupling effect[J]. Journal of Hydrology, 608: 127634.DOI: 10.1016/j.jhydrol.2022.127634 . |
null | Yang K, He J, Tang W J, et al, 2010.On downward shortwave and longwave radiations over high altitude regions: observation and modeling in the Tibetan Plateau[J]. Agricultural and Forest Meteorology, 150(1): 38-46.DOI: 10.1016/j.agrformet.2009.08.004 . |
null | Yang K, Qin J, Zhao L, et al, 2013.A multiscale soil moisture and freeze–thaw monitoring network on the third pole[J]. Bulletin of the American Meteorological Society, 94(12): 1907-1916.DOI: 10.1175/BAMS-D-12-00203.1 . |
null | Yang S Q, Zeng J Y, Fan W J, et al, 2022.Evaluating root-zone soil moisture products from GLEAM, GLDAS, and ERA5 based on in situ observations and triple collocation method over the Tibetan Plateau[J]. Journal of Hydrometeorology, 23(12): 1861-1878.DOI: 10.1175/JHM-D-22-0016.1 . |
null | Yao Y Y, Zheng C M, Andrews C, et al, 2017.What controls the partitioning between baseflow and mountain block recharge in the Qinghai‐Tibet Plateau?[J]. Geophysical Research Letters, 44(16): 8352-8358.DOI: 10.1002/2017GL074344 . |
null | Zeng J Y, Shi P F, Chen K S, et al, 2021.Assessment and error analysis of satellite soil moisture products over the third pole[J]. IEEE Transactions on Geoscience and Remote Sensing, 60: 1-18.DOI: 10.1109/TGRS.2021.3116078 . |
null | Zhang P, Zheng D H, van der Velde R, et al, 2021.Status of the Tibetan Plateau observatory (Tibet-Obs) and a 10-year (2009-2019) surface soil moisture dataset[J]. Earth System Science Data, 13(6): 3075-3102.DOI: 10.5194/essd-13-3075-2021 . |
null | Zhang P, Zheng D H, van der Velde R, et al, 2022.A dataset of 10-year regional-scale soil moisture and soil temperature measurements at multiple depths on the Tibetan Plateau[J]. Earth System Science Data, 14(12): 5513-5542.DOI: 10.5194/essd-14-5513-2022 . |
null | Zheng D H, Li X, Wang X, et al, 2019.Sampling depth of L-band radiometer measurements of soil moisture and freeze-thaw dynamics on the Tibetan Plateau[J]. Remote Sensing of Environment, 226: 16-25.DOI: 10.1016/j.rse.2019.03.029 . |
null | Zheng D H, van der Velde R, Su Z B, et al, 2015b.Augmentations to the Noah model physics for application to the Yellow River source area.Part I: soil water flow[J]. Journal of Hydrometeorology, 16(6): 2659-2676.DOI: 10.1175/JHM-D-14-0198.1 . |
null | Zheng D H, Van der Velde R, Su Z, et al, 2015a.Under‐canopy turbulence and root water uptake of a T ibetan meadow ecosystem modeled by N oah‐MP[J]. Water Resources Research, 51(7): 5735-5755.DOI: 10.1002/2015WR017115 . |
null | Zheng D H, Wang X, van der Velde R, et al, 2017.L-band microwave emission of soil freeze-thaw process in the third pole environment[J]. IEEE Transactions on Geoscience and Remote Sensing, 55(9): 5324-5338.DOI: 10.1109/TGRS.2017.2705248 . |
null | Zhuang R D, Zeng Y J, Manfreda S, et al, 2020.Quantifying long-term land surface and root zone soil moisture over Tibetan Plateau[J]. Remote Sensing, 12(3): 509.DOI: 10.3390/rs12030509 . |
null | |
null | Fang X W, Lü S H, et al, 2021.Analysis on the changes of soil freezing and thawing process and its relationship with air temperature in the central Qinghai-Xizang Plateau[J]. Plateau Meteorology, 40(2): 244-256.DOI: 10.7522/j.issn.1000-0534.2020.00073 . |
null | |
null | Lai X, Fan G Z, 2022.Impacts of spring soil moisture anomalies in Qinghai-Xizang Plateau on the summer precipitation variability in China[J]. Plateau Meteorology, 41(1): 24-34.DOI: 10.7522/j.issn.1000-0534.2020.00094 . |
null | |
null | Zhu Z L, Xu Z W, et al, 2023.Characteristics of Surface soil moisture drydown in the Heihe River Basin[J]. Plateau Meteorology, 42(3): 771-784.DOI: 10.7522/j.issn.1000-0534.2022.00086 . |
null | |
null | Yang K, Zheng D H, et al, 2022.Impact of soil organic matter content on soil moisture and temperature at different depths in the central Qinghai-Xizang Plateau[J]. Plateau Meteorology, 41(5): 1097-1108.DOI: 10.7522/j.issn.1000-0534.2021.00039 . |
null | |
null | Fan G Z, Hua W, et al, 2021.Progress in the study of influence of the Qinghai-Xizang Plateau land atmosphere interaction on East Asia regional climate[J]. Plateau Meteorology, 40(6): 1263-1277.DOI: 10.7522/j.issn.1000-0534.2021.zk018 . |
null | |
null | Lü S H, Zhang S B, et al, 2023.Improvement of soil freeze-thaw parameterization on the Qinghai-Xizang (Tibet) Plateau and its effect comparison in BCC_CSM Climate Model[J]. Plateau Meteorology, 42(5): 1093-1106.DOI: 10.7522/j.issn.1000-0534.2023.00002 . |