Estimation of Rootzone Soil Moisture over the Qinghai-Xizang Plateau using the Exponential Filter Model

  • Yuxi SONG ,
  • Jianbin SU ,
  • Jun WEN ,
  • Donghai ZHENG
Expand
  • 1. Key Laboratory of Plateau Atmosphere and Environment,Sichuan Province,College of Atmospheric Sciences,Chengdu University of Information Technology,Chengdu 610225,Sichuan,China
    2. National Tibetan Plateau Data Center,State Key Laboratory of Tibetan Plateau Earth System,Resource and Environment,Institute of Tibetan Plateau Research,Chinese Academy of Sciences,Beijing 100101,China

Received date: 2023-10-31

  Revised date: 2024-03-29

  Online published: 2024-03-29

Abstract

High-precision and long time-series soil moisture (SM) data are crucial for quantifying the land-atmosphere interactions on the Qinghai-Xizang Plateau (QXP).However, most of current studies on the Tibetan Plateau mainly focus on retrieving surface SM based on the satellite data, with relative lack of studies on estimating rootzone SM (RZSM).Based on data collected from five SM observation networks on the QXP (i.e., Shiquanhe, Pali, Naqu, upper reaches of Heihe River, and Maqu), this paper systematically evaluates the applicability of the exponential filter model for estimating RZSM (i.e., 10, 20, 40 cm) in different climatic and land areas of the QXP.In addition, we explore the impacts of different environmental factors (e.g., soil properties, climate, and vegetation) on the estimated key model parameter, i.e., characteristic time length T.Moreover, the reliability of regional-scale T-value obtained using three methods (i.e., using the median value of optimal T-value obtained for each observation network or the whole Qinghai-Xizang Plateau, or the random forest model) for estimating RZSM on the QXP was assessed.The results showed that: (1) With the increase of soil depth, the correlation between rootzone and surface SM decreased while its spatial heterogeneity increased.This results in a decrease in the accuracy of the exponential filter model, but the obtained T-value and its spatial heterogeneity increased.(2) Spatially, with the increase of precipitation and SM content, the correlation between rootzone and surface SM increased while its spatial heterogeneity decreased.This leads to an increase in the accuracy of the exponential filter model, while the difference in accuracy of the model applied to different sites shows a decreasing trend.(3) Soil properties, especially the sand content, are the main factors controlling the spatial distribution of T-value on the QXP.(4) The different methods for obtaining regional-scale T-value have little influence on the accuracy of the exponential filter model in estimating the RZSM on the QXP.Specifically, both the commonly used methods, such as using the median value of optimal T-value or the random forest model, can obtain reasonable regional-scale T-value and achieve consistent and accurate RZSM estimations.These findings are expected to promote the use of the exponential filter model to accurately obtain the RZSM on the TP using satellite-based surface SM data.

Cite this article

Yuxi SONG , Jianbin SU , Jun WEN , Donghai ZHENG . Estimation of Rootzone Soil Moisture over the Qinghai-Xizang Plateau using the Exponential Filter Model[J]. Plateau Meteorology, 2025 , 44(1) : 134 -149 . DOI: 10.7522/j.issn.1000-0534.2024.00049

References

null
Albergel C De Rosnay P Gruhier C, et al, 2012.Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations[J].Remote Sensing of Environment, 118: 215-226.DOI: 10.1016/j.rse.2011.11.017 .
null
Albergel C Rüdiger C Pellarin T, et al, 2008.From near-surface to root-zone soil moisture using an exponential filter: an assessment of the method based on in-situ observations and model simulations[J].Hydrology and Earth System Sciences12(6): 1323-1337.DOI: 10.5194/hess-12-1323-2008 .
null
Al-Hamdan O Cruise J2010.Soil moisture profile development from surface observations by principle of maximum entropy[J].Journal of Hydrologic Engineering15(5): 327-337.DOI: 10. 1061/(ASCE)HE.1943-5584.0000196 .
null
Beck H E Pan M Miralles D G, et al, 2020.Evaluation of 18 satellite-and model-based soil moisture products using in situ measurements from 826 sensors[J].Hydrology and Earth System Sciences Discussions25(1): 1-35.DOI: 10.5194/hess-25-17-2021 .
null
Brocca L Tarpanelli A Filippucci P, et al, 2018.How much water is used for irrigation?A new approach exploiting coarse resolution satellite soil moisture products[J].International Journal of Applied Earth Observation and Geoinformation, 73: 752-766.DOI: 10.1016/j.jag.2018.08.023 .
null
Ceballos A Scipal K Wagner W, et al, 2005.Validation of ERS scatterometer‐derived soil moisture data in the central part of the Duero Basin, Spain[J].Hydrological Processes: An International Journal19(8): 1549-1566.DOI: 10.1002/hyp.5585 .
null
Chen Y Y Yang K Qin J, et al, 2013.Evaluation of AMSR‐E retrievals and GLDAS simulations against observations of a soil moisture network on the central Tibetan Plateau[J].Journal of Geophysical Research: Atmospheres118(10): 4466-4475.DOI: 10.1002/jgrd.50301 .
null
Chen Y Y Yang K Qin J, et al, 2017.Evaluation of SMAP, SMOS, and AMSR2 soil moisture retrievals against observations from two networks on the Tibetan Plateau[J].Journal of Geophysical Research: Atmospheres122(11): 5780-5792.DOI: 10.1002/2016jd026388 .
null
Corradini C2014.Soil moisture in the development of hydrological processes and its determination at different spatial scales[J].Journal of Hydrology, 516: 1-5.DOI: 10.1016/j.jhydrol.2014. 02.051 .
null
De Lange R Beck R Van De Giesen N, et al, 2008.Scatterometer-derived soil moisture calibrated for soil texture with a one-dimensional water-flow model[J].IEEE Transactions on Geoscience and Remote Sensing46(12): 4041-4049.DOI: 10.1109/TGRS.2008.2000796 .
null
De Rosnay P Balsamo G Albergel C, et al, 2014.Initialisation of land surface variables for numerical weather prediction[J].Surveys in Geophysics35(3): 607-621.DOI: 10.1007/s10712-012-9207-x .
null
Dente L Vekerdy Z Wen J, et al, 2012.Maqu network for validation of satellite-derived soil moisture products[J].International Journal of Applied Earth Observation and Geoinformation, 17: 55-65.DOI: 10.1016/j.jag.2011.11.004 .
null
Ford T W Harris E Quiring S M2014.Estimating root zone soil moisture using near-surface observations from SMOS[J].Hydrology and Earth System Sciences18(1): 139-154.DOI: 10. 5194/hess-18-139-2014 .
null
Ge Y Wang J H Heuvelink G B, et al, 2015.Sampling design optimization of a wireless sensor network for monitoring ecohydrological processes in the Babao River basin, China[J].International Journal of Geographical Information Science29(1): 92-110.DOI: 10.1080/13658816.2014.948446 .
null
Grillakis M G Koutroulis A G Alexakis D D, et al, 2021.Regionalizing root‐zone soil moisture estimates from ESA CCI soil water index using machine learning and information on soil, vegetation, and climate[J].Water Resources Research57(5): e2020WR029249.DOI: 10.1029/2020WR029249 .
null
He J Yang K Tang W J, et al, 2020.The first high-resolution meteorological forcing dataset for land process studies over China[J].Scientific Data7(1): 25.DOI: 10.1038/s41597-020-0369-y .
null
Hengl T de Jesus J M MacMillan R A, et al, 2014.SoilGrids1km—global soil information based on automated mapping[J].PloS One9(8): e105992.DOI: 10.1371/journal.pone.0105992 .
null
Jin R Li X Yan B P, et al, 2014.A nested ecohydrological wireless sensor network for capturing the surface heterogeneity in the midstream areas of the Heihe River Basin, China[J].IEEE Geoscience and Remote Sensing Letters11(11): 2015-2019.DOI: 10.1109/LGRS.2014.2319085 .
null
Kang J Jin R Li X, et al, 2017.High spatio-temporal resolution mapping of soil moisture by integrating wireless sensor network observations and MODIS apparent thermal inertia in the Babao River Basin, China[J].Remote Sensing of Environment, 191: 232-245.DOI: 10.1016/j.rse.2017.01.027 .
null
Kumar S V Reichle R H Koster R D, et al, 2009.Role of subsurface physics in the assimilation of surface soil moisture observations[J].Journal of Hydrometeorology10(6): 1534-1547.DOI: 10.1175/2009JHM1134.1 .
null
Lakshmi V Piechota T Narayan U, et al, 2004.Soil moisture as an indicator of weather extremes[J].Geophysical Research Letters31(11).DOI: 10.1029/2004GL019930 .
null
Li F Q Crow W T Kustas W P2010.Towards the estimation root-zone soil moisture via the simultaneous assimilation of thermal and microwave soil moisture retrievals[J].Advances in Water Resources33(2): 201-214.DOI: 10.1016/j.advwatres.2009. 11.007 .
null
Liu S M Li X Xu Z W, et al, 2018.The Heihe Integrated Observatory Network: A basin‐scale land surface processes observatory in China[J].Vadose Zone Journal17(1): 1-21.DOI: 10.2136/vzj2018.04.0072 .
null
Ma Y M Ma W Q Zhong L, et al, 2017.Monitoring and Modeling the Tibetan Plateau’s climate system and its impact on East Asia[J].Scientific Reports7(1): 1-6.DOI: 10.1038/srep44574 .
null
Maggioni V Reichle R H Anagnostou E N2013.The efficiency of assimilating satellite soil moisture retrievals in a land data assimilation system using different rainfall error models[J].Journal of Hydrometeorology14(1): 368-374.DOI: 10.1175/JHM-D-12-0105.1 .
null
Mahmood R Littell A Hubbard K G, et al, 2012.Observed data-based assessment of relationships among soil moisture at various depths, precipitation, and temperature[J].Applied Geography, 34: 255-264.DOI: 10.1016/j.apgeog.2011.11.009 .
null
Mu?oz-Sabater J Dutra E Agustí-Panareda A, et al, 2021.ERA5-Land: a state-of-the-art global reanalysis dataset for land applications[J].Earth System Science Data13(9): 4349-4383.DOI: 10.5194/essd-13-4349-2021 .
null
Nash J E Sutcliffe J V1970.River flow forecasting through conceptual models part I—A discussion of principles[J].Journal of Hydrology10(3): 282-290.DOI: 10.1016/0022-1694(70)90255-6 .
null
Pan X Kornelsen K C Coulibaly P2017.Estimating root zone soil moisture at continental scale using neural networks[J].Journal of the American Water Resources Association53(1): 220-237.DOI: 10.1111/1752-1688.12491 .
null
Qin J Ding Y J Wu J K, et al, 2013.Understanding the impact of mountain landscapes on water balance in the upper Heihe River watershed in northwestern China[J].Journal of Arid Land5(3): 366-383.DOI: 10.1007/s40333-013-0162-2 .
null
Su Z B Wen J Dente L, et al, 2011.The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and model products[J].Hydrology and Earth System Sciences15(7): 2303-2316.DOI: 10.5194/hess-15-2303-2011 .
null
Tian J Han Z B Bogena H R, et al, 2020.Estimation of subsurface soil moisture from surface soil moisture in cold mountainous areas[J].Hydrology and Earth System Sciences24(9): 4659-4674.DOI: 10.5194/hess-24-4659-2020 .
null
Tian J Zhang Y Q Guo J P, et al, 2022.Predicting root zone soil moisture using observations at 2121 sites across China[J].Science of the Total Environment, 847: 157425.DOI: 10.1016/j.scitotenv.2022.157425 .
null
Wagner W Lemoine G Rott H1999.A method for estimating soil moisture from ERS scatterometer and soil data[J].Remote Sensing of Environment70(2): 191-207.DOI: 10.1016/S0034-4257(99)00036-X .
null
Wang T J Franz T E You J S, et al, 2017.Evaluating controls of soil properties and climatic conditions on the use of an exponential filter for converting near surface to root zone soil moisture contents[J].Journal of Hydrology, 548: 683-696.DOI: 10.1016/j.jhydrol.2017.03.055 .
null
Xu Z P Man X L Duan L L, et al, 2022.Improved subsurface soil moisture prediction from surface soil moisture through the integration of the (de) coupling effect[J].Journal of Hydrology, 608: 127634.DOI: 10.1016/j.jhydrol.2022.127634 .
null
Yang K He J Tang W J, et al, 2010.On downward shortwave and longwave radiations over high altitude regions: observation and modeling in the Tibetan Plateau[J].Agricultural and Forest Meteorology150(1): 38-46.DOI: 10.1016/j.agrformet.2009.08.004 .
null
Yang K Qin J Zhao L, et al, 2013.A multiscale soil moisture and freeze–thaw monitoring network on the third pole[J].Bulletin of the American Meteorological Society94(12): 1907-1916.DOI: 10.1175/BAMS-D-12-00203.1 .
null
Yang S Q Zeng J Y Fan W J, et al, 2022.Evaluating root-zone soil moisture products from GLEAM, GLDAS, and ERA5 based on in situ observations and triple collocation method over the Tibetan Plateau[J].Journal of Hydrometeorology23(12): 1861-1878.DOI: 10.1175/JHM-D-22-0016.1 .
null
Yao Y Y Zheng C M Andrews C, et al, 2017.What controls the partitioning between baseflow and mountain block recharge in the Qinghai‐Tibet Plateau?[J].Geophysical Research Letters44(16): 8352-8358.DOI: 10.1002/2017GL074344 .
null
Zeng J Y Shi P F Chen K S, et al, 2021.Assessment and error analysis of satellite soil moisture products over the third pole[J].IEEE Transactions on Geoscience and Remote Sensing, 60: 1-18.DOI: 10.1109/TGRS.2021.3116078 .
null
Zhang P Zheng D H van der Velde R, et al, 2021.Status of the Tibetan Plateau observatory (Tibet-Obs) and a 10-year (2009-2019) surface soil moisture dataset[J].Earth System Science Data13(6): 3075-3102.DOI: 10.5194/essd-13-3075-2021 .
null
Zhang P Zheng D H van der Velde R, et al, 2022.A dataset of 10-year regional-scale soil moisture and soil temperature measurements at multiple depths on the Tibetan Plateau[J].Earth System Science Data14(12): 5513-5542.DOI: 10.5194/essd-14-5513-2022 .
null
Zheng D H Li X Wang X, et al, 2019.Sampling depth of L-band radiometer measurements of soil moisture and freeze-thaw dynamics on the Tibetan Plateau[J].Remote Sensing of Environment, 226: 16-25.DOI: 10.1016/j.rse.2019.03.029 .
null
Zheng D H van der Velde R Su Z B, et al, 2015b.Augmentations to the Noah model physics for application to the Yellow River source area.Part I: soil water flow[J].Journal of Hydrometeorology16(6): 2659-2676.DOI: 10.1175/JHM-D-14-0198.1 .
null
Zheng D H Van der Velde R Su Z, et al, 2015a.Under‐canopy turbulence and root water uptake of a T ibetan meadow ecosystem modeled by N oah‐MP[J].Water Resources Research51(7): 5735-5755.DOI: 10.1002/2015WR017115 .
null
Zheng D H Wang X van der Velde R, et al, 2017.L-band microwave emission of soil freeze-thaw process in the third pole environment[J].IEEE Transactions on Geoscience and Remote Sensing55(9): 5324-5338.DOI: 10.1109/TGRS.2017.2705248 .
null
Zhuang R D Zeng Y J Manfreda S, et al, 2020.Quantifying long-term land surface and root zone soil moisture over Tibetan Plateau[J].Remote Sensing12(3): 509.DOI: 10.3390/rs12030509 .
null
蔡林彤, 方雪薇, 吕世华, 等, 2021.青藏高原中部冻融强度变化及其与气温的关系[J].高原气象40(2): 244-256.DOI: 10.7522/j.issn.1000-0534.2020.00073.Cai L T
null
Fang X W S H, et al, 2021.Analysis on the changes of soil freezing and thawing process and its relationship with air temperature in the central Qinghai-Xizang Plateau[J].Plateau Meteorology40(2): 244-256.DOI: 10.7522/j.issn.1000-0534.2020.00073 .
null
丁旭, 赖欣, 范广州, 2022.青藏高原春季土壤湿度异常与 我国夏季降水的联系[J].高原气象41(1): 24-34.DOI: 10.7522/j.issn.1000-0534.2020.00094.Ding X
null
Lai X Fan G Z2022.Impacts of spring soil moisture anomalies in Qinghai-Xizang Plateau on the summer precipitation variability in China[J].Plateau Meteorology41(1): 24-34.DOI: 10.7522/j.issn.1000-0534.2020.00094 .
null
董世玉, 朱忠礼, 徐自为, 等, 2023.黑河流域表层土壤水分干化特征研究[J].高原气象42(3): 771-784.DOI: 10.7522/j.issn.1000-0534.2022.00086.Dong S Y
null
Zhu Z L Xu Z W, et al, 2023.Characteristics of Surface soil moisture drydown in the Heihe River Basin[J].Plateau Meteorology42(3): 771-784.DOI: 10.7522/j.issn.1000-0534.2022.00086 .
null
符晴, 阳坤, 郑东海, 等, 2022.青藏高原中部土壤有机质含量对不同深度土壤温湿度的影响研究[J].Plateau Meteorology41(5): 1097-1108.DOI: 10.7522/j.issn.1000-0534.2021.00039. Fu Q
null
Yang K Zheng D H, et al, 2022.Impact of soil organic matter content on soil moisture and temperature at different depths in the central Qinghai-Xizang Plateau[J].Plateau Meteorology41(5): 1097-1108.DOI: 10.7522/j.issn.1000-0534.2021.00039 .
null
赖欣, 范广州, 华维, 等, 2021.青藏高原陆气相互作用对东亚区域气候影响的研究进展[J].高原气象40(6): 1263-1277.DOI: 10.7522/j.issn.1000-0534.2021.zk018.Lai X
null
Fan G Z Hua W, et al, 2021.Progress in the study of influence of the Qinghai-Xizang Plateau land atmosphere interaction on East Asia regional climate[J].Plateau Meteorology40(6): 1263-1277.DOI: 10.7522/j.issn.1000-0534.2021.zk018 .
null
杨凡, 吕世华, 张少波, 等, 2023.青藏高原土壤冻融参数化改进及其在 BCC_CSM 气候模式中的效果对比[J].高原气象42(5): 1093-1106.DOI: 10.7522/j.issn.1000-0534.2023.00002.Yang F
null
S H Zhang S B, et al, 2023.Improvement of soil freeze-thaw parameterization on the Qinghai-Xizang (Tibet) Plateau and its effect comparison in BCC_CSM Climate Model[J].Plateau Meteorology42(5): 1093-1106.DOI: 10.7522/j.issn.1000-0534.2023.00002 .
Outlines

/