Advances in the Study of Thermal and Hydraulic Parameterizations for Soil Freeze-Thaw Process

  • Ya HOU ,
  • Weiping LI ,
  • Jinqing ZUO
Expand
  • 1. State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences,China Meteorological Administration,Beijing 100081,China
    2. Earth System Modeling and Prediction Centre,China Meteorological Administration,Beijing 100081,China
    3. Key Laboratory for Climate Prediction Studies,National Climate Centre,China Meteorological Administration,Beijing 100081,China

Received date: 2023-12-15

  Revised date: 2024-04-15

  Online published: 2024-04-15

Abstract

Frozen soil is the essential component of terrestrial cryosphere.Soil freeze-thaw process (SFT) affects soil structure, soil hydrothermal transfer, and biogeochemical processes, thereby influencing local and global weather and climate through land-atmosphere interaction.Therefore, it is of importance to explore SFT for human activities in frozen soil regions and for studying weather and climate change for local and remote regions.This paper reviews the effects and physical mechanisms of gravel and soil organic matter (SOM) on soil thermal and hydrological parameters and SFT, and summaries achievements in parameterizations of SFT, with focuses on soil thermal conductivity, hydraulic parameters, water-heat coupled parameterization, and freeze-thaw fronts.Gravel (SOM) has higher (lower) thermal conductivity and lower (higher) heat capacity, and thus they have different effects on the soil heat transfer and vertical distribution of soil temperature.Additionally, the existences of gravel and SOM change soil porosity, matrix capillary and adsorption, thereby affecting the transfer and vertical distribution of soil water content.Previous studies show that: (1) the Johansen scheme and its derivatives are widely incorporated into land models to calculate soil thermal conductivity.In consideration of the effect of gravel and SOM on soil thermal conductivity, the Balland-Arp scheme, a derivative of the Johansen scheme, better describes soil thermal conductivity during SFT.The thermal-hydro-deformation interaction thermal conductivity scheme comprehensively describes the water-heat coupling and frost heave impacts, resulting in more accurate simulation of characteristics of soil thermal conductivity in the drastic phase transition.(2) Supercooled water parameterization scheme can depict the existence of liquid water below 0 °C in soil.Variable freezing threshold parameterization depicts that water phase transition to ice happens below 0 °C.Taking account of the impedance of soil ice to liquid water infiltration improves model performance in simulating the hydrological process in frozen soil.(3) The water-heat coupled scheme is proposed to capture the synergistic changes of both thermal and hydraulic processes in soil, especially the interaction between water and heat.These schemes describe complex physical mechanisms during SFT in detail, and therefore can reduce model biases in simulating the transfer and vertical distribution of heat and water in soil.(4) Most numerical models with an isothermal framework assume that phase change of soil water/ice occurs in the middle of each soil layer and the entire model layer is either frozen or thawed, resulting in serious misestimates of the freeze-thaw depth in soil.To solve this problem, the freeze-thaw front parameterization scheme is developed and incorporated into models.Despite great progress in simulating SFT, there are still some deficiencies.Saline soil lowers freezing point of soil water, but this has not been considered in most current numerical models; although the impact of SOM on soil thermal and hydraulic conductivities has been taken into account, the content of SOM and its vertical distribution is not realistically associated with the growth of vegetation roots; the entire soil depth is not sufficient deep and the assumption of zero heat flux through bottom of soil in numerical models is not the case in the reality.Therefore developments of parameterization schemes to simulate the transfer and distribution of soil salt, to depict the root growth and vertical distribution of SOM, to take account of the influence of deep soil layers and real bottom boundary conditions are among the possible improvements in the future land models to improve the simulation of SFT.

Cite this article

Ya HOU , Weiping LI , Jinqing ZUO . Advances in the Study of Thermal and Hydraulic Parameterizations for Soil Freeze-Thaw Process[J]. Plateau Meteorology, 2025 , 44(1) : 1 -15 . DOI: 10.7522/j.issn.1000-0534.2024.00060

References

null
Balland V Arp P A2005.Modeling soil thermal conductivities over a wide range of conditions[J].Journal of Environmental Engineering and Science4(6): 549-558.DOI: 10.1139/S05-007 .
null
Bao H Y Koike T Yang K, et al, 2016.Development of an enthalpy-based frozen soil model and its validation in a cold region in China[J].Journal of Geophysical Research: Atmospheres121(10): 5259-5280.DOI: 10.1002/ 2015jd024451 .
null
Barry-Macaulay D, Bouazza A Wang B, et al, 2015.Evaluation of soil thermal conductivity models[J].Canadian Geotechnical Journal52(11): 1892-1900, DOI: 10.1139/cgj-2014-0518 .
null
Benson C H Othman M A1993.Hydraulic conductivity of compacted clay frozen and thawed in situ[J].Journal of Geotechnical Engineering119(2): 276-294.DOI: 10.1061/(ASCE)0733-9410(1993)119: 2(276 ).
null
Blyth E M Arora V K Clark D B, et al, 2021.Advances in land surface modelling[J].Current Climate Change Reports7(2): 45-71.DOI: 10.1007/s40641-021-00171-5 .
null
Chadburn S Burke E Essery R, et al, 2015.An improved representation of physical permafrost dynamics in the JULES land-surface model[J].Geoscientific Model Development8(5): 1493-1508.DOI: 10.5194/gmd-8-1493-2015 .
null
Chou Y L Wang L J2021.Seasonal freezing-thawing process and hydrothermal characteristics of soil on the Loess Plateau, China[J].Journal of Mountain Science18(11): 3082-3098.DOI: 10.1007/s11629-020-6599-9 .
null
Clapp R B Hornberger G M1978.Empirical equations for some soil hydraulic properties[J].Water Resources Research14(4): 601-604.DOI: 10.1029/WR014i004p00601 .
null
Cosenza P Guérin R Tabbagh A2003.Relationship between thermal conductivity and water content of soils using numerical modelling[J].European Journal of Soil Science54(3): 581-588.DOI: 10.1046/j.1365-2389.2003.00539.x .
null
C?te J Konrad J M2005.A generalized thermal conductivity model for soils and construction materials[J].Canadian Geotechnical Journal42(2): 443-458.DOI: 10.1139/t04-106 .
null
Cui Y Wang C H2009.Comparison of sensible and latent heat fluxes during the transition season over the western Tibetan Plateau from reanalysis datasets[J].Progress in Natural Science19(6): 719-726.DOI: 10.1016/j.pnsc.2008.11.001 .
null
Dai Y J Wei N Yuan H, et al, 2019.Evaluation of soil thermal conductivity schemes for use in land surface modeling[J].Journal of Advances in Modeling Earth Systems11(11): 3454-3473.DOI: 10.1029/2019MS001723 .
null
De Lannoy G J Koster R D Reichle R H, et al, 2014.An updated treatment of soil texture and associated hydraulic properties in a global land modeling system[J].Journal of Advances in Modeling Earth Systems6(4): 957-979.DOI: 10.1002/2014MS000330 .
null
De Vries D A1963.Thermal properties of soils[M].In Physics of Plant Environment.Amsterdam: North‐Holland Publ.Co.
null
Deng M S Meng X H Lu Y Q, et al, 2021.Impact and sensitivity analysis of soil water and heat transfer parameterizations in community land surface model on the Tibetan Plateau[J].Journal of Advances in Modeling Earth Systems13(9): e2021MS002670.DOI: 10.1029/2021MS002670 .
null
Devoie é G Craig J R2020.A semianalytical interface model of soil freeze/thaw and permafrost evolution[J].Water Resources Research56(8): e2020WR027638.DOI: 10.1029/2020WR027638 .
null
Du Y Z Li R Zhao L, et al, 2020.Evaluation of 11 soil thermal conductivity schemes for the permafrost region of the central Qinghai-Tibet Plateau[J].Catena, 193: 104608.DOI: 10.1016/j.catena.2020.104608 .
null
Ekici A Beer C Hagemann S, et al, 2014.Simulating high-latitude permafrost regions by the JSBACH terrestrial ecosystem model[J].Geoscientific Model Development7(2): 631-647.DOI: 10.5194/tc-9-1343-2015 .
null
Farouki O T1981.The thermal properties of soils in cold regions[J].Cold Regions Science and Technology5(1): 67-75.DOI: 10.1016/0165-232X(81)90041-0 .
null
Fisher R A Koven C D2020.Perspectives on the future of land surface models and the challenges of representing complex terrestrial systems[J].Journal of Advances in Modeling Earth Systems12(4): e2018MS001453.DOI: 10.1029/2018MS001453 .
null
Fuchs M Campbell G S Papendick R I1978.An analysis of sensible and latent heat flow in a partially frozen unsaturated soil[J].Soil Science Society of America Journal, 42: 379-385.DOI: 10.2136/sssaj1978.03615995004200030001x .
null
Gao J Q Xie Z H Wang A W, et al, 2016.Numerical simulation based on two-directional freeze and thaw algorithm for thermal diffusion model[J].Applied Mathematics and Mechanics37(11): 1467-1478.DOI: 10.1007/s10483-016-2106-8 .
null
Gao J Q Xie Z H Wang A W, et al, 2019.A new frozen soil parameterization including frost and thaw fronts in the Community Land Model[J].Journal of Advances in Modeling Earth Systems11(3): 659-679.DOI: 10.1029/2018MS001399 .
null
Gao Y H Li K Chen F, et al, 2015.Assessing and improving Noah MP land model simulations for the central Tibetan Plateau[J].Journal of Geophysical Research: Atmosphere, 120: 9258 9278.DOI: 10.1002/ 2015JD023404 .
null
Guo D Wang H2013.Simulation of permafrost and seasonally frozen ground conditions on the Tibetan Plateau, 1981-2010[J].Journal of Geophysical Research: Atmospheres118(11): 5216-5230.DOI: 10.1002/jgrd.50457 .
null
Guo D L Yang M X Wang H J2011.Characteristics of land surface heat and water exchange under different soil freeze/thaw conditions over the central Tibetan Plateau[J].Hydrological Processes25(16): 2531-2541.DOI: 10.1002/hyp.8025 .
null
Guo L Yu Q H Yin N, et al, 2022.Effect of freeze-thaw cycle on hydraulic conductivity of compacted clayey soil[J].Journal of Mountain Science19(2): 606-614.DOI: 10.1007/s11629-021-6683-9 .
null
Hansson K ?im?nek J Mizoguchi M, et al, 2004.Water flow and heat transport in frozen soil: Numerical solution and freeze-thaw applications[J].Vadose Zone Journal3(2): 693-704.DOI: 10.2136/vzj2004.0693 .
null
Hayashi M2013.The cold vadose zone: Hydrological and ecological significance of frozen-soil processes[J].Vadose Zone Journal12(4).DOI: 10.2136/vzj2013.03.0064 .
null
Johansen O1977.Thermal conductivity of soils[D].Norwegian Institute of Technology.
null
Jumikis A1977.Thermal geotechnics[M].New Brunswick, NJ: Rutgers University Press:.
null
Kv?rn? S H ?ygarden L2006.The influence of freeze-thaw cycles and soil moisture on aggregate stability of three soils in Norway[J].Catena67(3): 175-182.DOI: 10.1016/j.catena.2006.03.011 .
null
Lawrence D M Fisher R A Koven C D, et al, 2019.The Community Land Model version 5: Description of new features, benchmarking, and impact of forcing uncertainty[J].Journal of Advances in Modeling Earth Systems11(12): 4245-4287.DOI: 10.1029/2018MS001583 .
null
Lawrence D M Slater A G2008.Incorporating organic soil into a global climate model[J].Climate Dynamics, 30: 145-160.DOI 10.1007/s00382-007-0278-1.
null
Lawrence D M Slater A G Swenson S C2012.Simulation of present-day and future permafrost and seasonally frozen ground conditions in CCSM4[J].Journal of Climate25(7): 2207-2225.DOI: 10.1175/JCLI-D-11-00334.1 .
null
Li Q Sun S F Xue Y K2010.Analyses and development of a hierarchy of frozen soil models for cold region study[J].Journal of Geophysical Research.115: D03107.DOI: 10.1029/2009JD012530 .
null
Li R C Xie J B Xie Z H, et al, 2023.Coupling of the calculated freezing and thawing front parameterization in the earth system model CAS-ESM[J].Advances in Atmospheric Sciences, 1-18.DOI: 10.1007/s00376-023-2203-x .
null
Li X Y2003.Gravel-sand mulch for soil and water conservation in the semiarid loess region of northwest China[J].Catena52(2): 105-127.DOI: 10.1016/S0341-8162(02)00181-9 .
null
Lu J G Wan X S Yan Z R, et al, 2022.Modeling thermal conductivity of soils during a freezing process[J].Heat and Mass Transfer58(2): 283-293.DOI: 10.1007/s00231-021-03110-0 .
null
Lu S Ren T Gong Y, et al, 2007.An improved model for predicting soil thermal conductivity from water content at room temperature[J].Soil Science Society of America Journal71(1): 8-14.DOI: 10.2136/sssaj2006.0041 .
null
Lundin L C1990.Hydraulic properties in an operational model of frozen soil[J].Journal of Hydrology118(1-4): 289-310.DOI: 10.1016/0022-1694(90)90264-X .
null
Luo J X Huang A N Lyu S H, et al, 2023.Improved performance of CLM5.0 model in frozen soil simulation over tibetan plateau by implementing the vegetation emissivity and gravel hydrothermal schemes[J].Journal of Geophysical Research: Atmospheres128(6): e2022JD038021.DOI: 10.1029/2022JD038021 .
null
Luo S Q Chen B L Lyu S H, et al, 2018.An improvement of soil temperature simulations on the Tibetan Plateau[J].Sciences in Cold and Arid Regions10(1): 80-94.DOI: 10.3724/SP.J. 1226.2018.00080 .
null
Luo S Q Fang X W Lyu S H, et al, 2017.Improving CLM4.5 simulations of land-atmosphere exchange during freeze-thaw processes on the Tibetan Plateau[J].Journal of Meteorological Research31(5): 916-930.DOI: 10.1007/s13351-017-6063-0 .
null
Ma Y M Hu Z Y Xie Z P, et al, 2020.A long-term (2005-2016) dataset of hourly integrated land-atmosphere interaction observations on the Tibetan Plateau[J].Earth System Science Data12(4): 2937-2957.DOI: 10.5194/essd-12-2937-2020 .
null
Masson V Moigne P L Martin E, et al, 2013.The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of Earth surface variables and fluxes[J].Geoscientific Model Development6(4): 929-960.DOI: 10.5194/gmd-6-929-2013
null
McCauley C A White D M Lilly M R, et al, 2002.A comparison of hydraulic conductivities, permeabilities and infiltration rates in frozen and unfrozen soils[J].Cold Regions Science and Technology34(2): 117-125.DOI: 10.1016/S0165-232X(01)00064-7 .
null
Melton J R Verseghy D L Sospedra-Alfonso R, et al, 2019.Improving permafrost physics in the coupled Canadian Land Surface Scheme (v.3.6.2) and Canadian Terrestrial Ecosystem Model (v.2.1) (CLASS-CTEM)[J].Geoscientific Model Development12(10): 4443-4467.DOI: 10.5194/gmd-12-4443-2019 .
null
Mohammed A A Kurylyk B L Cey E E, et al, 2018.Snowmelt infiltration and macropore flow in frozen soils: overview, knowledge gaps, and a conceptual framework[J].Vadose Zone Journal17(1): 1-15.DOI: 10.2136/vzj2018.04.0084 .
null
Muller S W1945.Permafrost, or permanently frozen ground: and related engineering problems[M].Army map service, US Army.
null
Niu G Y Yang Z L2006.Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale[J].Journal of Hydrometeorology, 7: 937-952.DOI: 10.1175/JHM538.1 .
null
Ochsner T2019.Rain or shine: an introduction to soil physical properties and processes[J].Creative Commons Attribution, Wise Oklahoma State University Library Open Textbook Initiative Stillwater, Oklahoma, USA.DOI: 1022488/okstate.21.000000 .
null
Oleson K W Niu G Y Yang Z L, et al, 2008.Improvements to the Community Land Model and their impact on the hydrological cycle[J].Journal of Geophysical Research, 113: G01021.DOI: 10.1029/2007JG000563 .
null
Overduin P P Kane D L Van Loon W K2006.Measuring thermal conductivity in freezing and thawing soil using the soil temperature response to heating[J].Cold Regions Science and Technology45(1): 8-22.DOI: 10.1016/j.coldregions.2005.12.003 .
null
Pan Y J Lyu S H Li S S, et al, 2017.Simulating the role of gravel in freeze-thaw process on the Qinghai-Tibet Plateau[J].Theoretical and Applied Climatology, 127: 1011-1022.DOI 10.1007/s00704-015-1684-7.
null
Philip J De Vries D D1957.Moisture movement in porous materials under temperature gradients[J].Eos, Transactions American Geophysical Union38(2): 222-232.DOI: 10.1029/TR038i002p00222 .
null
Pollack H N Huang S2000.Climate reconstruction from subsurface temperatures[J].Annual Review of Earth and Planetary Sciences28(1): 339-365.DOI: 10.1146/annurev.earth.28.1.339 .
null
Ren J Men L L Zhang W B, et al, 2019.A new empirical model for the estimation of soil thermal conductivity[J].Environmental Earth Sciences, 78: 1-16.DOI: 10.1007/s12665-019-8360-7 .
null
Seyfried M Flerchinger G1994.Influence of frozen soil on rangeland erosion[J].Variability in Rangeland Water Erosion Processes, 38: 67-82.DOI: 10.2136/sssaspecpub38.c6 .
null
Shangguan W Dai Y J Duan Q Y, et al, 2014.A global soil data set for earth system modeling[J].Journal of Advances in Modeling Earth Systems6(1): 249-263.DOI: 10.1002/2013MS000293 .
null
Soong J L Phillips C L Ledna C, et al, 2020.CMIP5 models predict rapid and deep soil warming over the 21st century[J].Journal of Geophysical Research: Biogeosciences125(2): e2019JG005266.DOI: 10.1029/2019JG005266 .
null
Spaans E J A Baker J M1996.The soil freezing characteristic: its measurement and similarity to the soil moisture characteristic[J].Soil Science Society of America Journal, 60: 13-19.DOI: 10.2136/sssaj1996.03615995006000010005x .
null
Sun H Liu X D2021.Impacts of dynamic and thermal forcing by the Tibetan Plateau on the precipitation distribution in the Asian arid and monsoon regions[J].Climate Dynamics56(7-8): 2339-2358.DOI: 10.1007/s00382-020-05593-9 .
null
Sun J Chen Y Y Yang K, et al, 2021.Influence of organic matter on soil hydrothermal processes in the Tibetan Plateau: observation and parameterization[J].Journal of Hydrometeorology22(10): 2659-2674.DOI: 10.1175/JHM-D-21-0059.1 .
null
Swenson S C Lawrence D M Lee H2012.Improved simulation of the terrestrial hydrological cycle in permafrost regions by the Community Land Model[J].Journal of Advances in Modeling Earth Systems, 4: M08002.DOI: 10.1029/2012MS000165 .
null
Tarnawski V R, Leong W H, 2012.A series‐parallel model for estimating the thermal conductivity of unsaturated soils[J].International Journal of Thermophysics33(7): 1191-1218.DOI: 10.1007/s10765‐012‐1282‐1 .
null
Turetsky M R Abbott B W Jones M C, et al, 2019.Permafrost collapse is accelerating carbon release[J].Nature569(7754): 32-34.DOI: 10.1038/d41586-019-01313-4 .
null
Varney R M Chadburn S E Burke E J, et al, 2022.Evaluation of soil carbon simulation in CMIP6 Earth system models[J].Biogeosciences, 19: 4671-4704.DOI: 10.5194/bg-19-4671-2022 .
null
Wang C H Yang K2018.A new scheme for considering soil water‐heat transport coupling based on Community Land Model: Model description and preliminary validation[J].Journal of Advances in Modeling Earth Systems10(4): 927-950.DOI: 10.1002/2017MS001148 .
null
Wang J Y Luo S Q Li Z G, et al, 2019.The freeze/thaw process and the surface energy budget of the seasonally frozen ground in the source region of the Yellow River[J].Theoretical and Applied Climatology, 138: 1631-1646.DOI: 10.1007/s00704-019-02917-6 .
null
Weismüller J Wollschl?ger U Boike J, et al, 2011.Modeling the thermal dynamics of the active layer at two contrasting permafrost sites on Svalbard and on the Tibetan Plateau[J].The Cryosphere5(3): 741-757.DOI: 10.5194/tc-5-741-2011 .
null
Westermann S Langer M Boike J, et al, 2016.Simulating the thermal regime and thaw processes of ice‐rich permafrost ground with the land‐surface model CryoGrid 3[J].Geoscientific Model Development9(2): 523-546.DOI: 10.5194/gmd-9-523-2016 .
null
Westermann S Schuler T Gisn?s K, et al, 2013.Transient thermal modeling of permafrost conditions in Southern Norway[J].The Cryosphere7(2): 719-739.DOI: 10.5194/tc-7-719-2013 .
null
Woo M K Arain M Mollinga M, et al, 2004.A two‐directional freeze and thaw algorithm for hydrologic and land surface modelling[J].Geophysical Research Letters31(12).DOI: 10.1029/2004GL019475 .
null
Wu G X Liu Y M2016.Impacts of the Tibetan Plateau on Asian climate[J].Meteorological Monographs, 56: 7.1-7.29.DOI: 10. 1175/AMSMONOGRAPHS-D-15-0018.1 .
null
Wu X D Zhao L Fang H B, et al, 2012.Soil enzyme activities in permafrost regions of the western Qinghai‐Tibetan Plateau[J].Soil Science Society of America Journal76(4): 1280-1289.DOI: 10.2136/sssaj2011.0400 .
null
Xie C W William A G2013.A simple thaw‐freeze algorithm for a multi‐layered soil using the Stefan Equation[J].Permafrost and Periglacial Processes24(3): 252-260.DOI: 10.1002/ppp.1770 .
null
Xie J B Xie Z H Jia B H, et al, 2021.Coupling of the CAS‐LSM Land‐Surface Model With the CAS‐FGOALS‐g3 Climate System Model[J].Journal of Advances in Modeling Earth Systems13(1): e2020MS002171.DOI: 10.1029/2020MS002171 .
null
Xie Z H Liu S Zeng Y J, et al, 2018.A high‐resolution land model with groundwater lateral flow, water use, and soil freeze‐thaw front dynamics and its applications in an endorheic basin[J].Journal of Geophysical Research: Atmospheres123(14): 7204-7222.DOI: 10.1029/2018JD028369 .
null
Xie Z H Wang L H Wang Y, et al, 2020.Land surface model CAS‐LSM: Model description and evaluation[J].Journal of Advances in Modeling Earth Systems12(12): e2020MS002339.DOI: 10.1029/2020MS002339 .
null
Yan H N He H L Dyck M, et al, 2019, A generalized model for estimating effective soil thermal conductivity based on the Kasubuchi algorithm[J].Geoderma, 353: 227-242.DOI: 10.1016/j.geoderma.2019.06.031 .
null
Yang K Wang C Li S2018.Improved simulation of frozen-thawing process in land surface model (CLM4.5)[J].Journal of Geophysical Research: Atmospheres, 123: 13238-13258.DOI: 10. 1029/2017JD028260 .
null
Yang S H Li R Wu T H, et al, 2021.Evaluation of soil thermal conductivity schemes incorporated into CLM5.0 in permafrost regions on the Tibetan Plateau[J].Geoderma, 401: 115330.DOI: 10.1016/j.geoderma.2021.115330 .
null
Yi S Chen J Wu Q, et al, 2013.Simulating the role of gravel on the dynamics of permafrost on the Qinghai‐Tibetan Plateau[J].The Cryosphere Discussions7(5): 4703-4740.DOI: 10.5194/tcd-7-4703-2013 .
null
Yu L Y Zeng Y J Wen J, et al, 2018.Liquid‐vapor‐air flow in the frozen soil[J].Journal of Geophysical Research: Atmospheres123(14): 7393-7415.DOI: 10.1029/2018JD028502 .
null
Zhang L Ren F P Li H, et al, 2021.The influence mechanism of freeze‐thaw on soil erosion: A review[J].Water13(8): 1010.DOI: 10.3390/w13081010 .
null
Zhang T J Barry R G Knowles K, et al, 2008.Statistics and characteristics of permafrost and ground‐ice distribution in the Northern Hemisphere[J].Polar Geography, 31: 47-68.DOI: 10.1080/10889370802175895 .
null
Zhao Y Nan Z T Ji H L, et al, 2022.Convective heat transfer of spring meltwater accelerates active layer phase change in Tibet permafrost areas[J].The Cryosphere16(3): 825-849.DOI: 10.5194/tc-16-825-2022 .
null
Zhou J Z Meng X C Wei C F, et al, 2020.Unified soil freezing characteristic for variably‐saturated saline soils[J].Water Resources Research, 56: e2019WR026648.DOI: 10.1029/2019WR026648 .
null
Zhou J Z Wei C F Lai Y M, et al, 2018.Application of the generalized Clapeyron equation to freezing point depression and unfrozen water content[J].Water Resources Research, 54: 9412-9431.DOI: 10.1029/2018WR023221 .
null
单秀枝, 魏由庆, 严慧峻, 等, 1998.土壤有机质含量对土壤水动力学参数的影响[J].土壤学报35(1): 1-9.DOI: 10.11766/trxb1 99610170101.Shan X
null
Wei Y Q Yan H J, et al, 1998.Influence of organic matter content on soil hydrodynamic parameters[J].Acta Pedologica Sinica35(1): 1-9.DOI: 10.11766/trxb1 99610170101 .
null
符晴, 阳坤, 郑东海, 等, 2022.青藏高原中部土壤有机质含量对不同深度土壤温湿度的影响研究[J].高原气象41(5): 1097-1108.DOI: 10.7522/j.issn.1000-0534.2021.00039.Fu Q
null
Yang K Zheng D, et al, 2022.Impact of Soil Organic Matter Content on Soil Moisture and Temperature at Different Depths in the Central Qinghai‐Xizang Plateau[J].Plateau Meteorology41(5): 1097-1108.DOI: 10.7522/j.issn.1000-0534.2021.00039 .
null
付春伟, 胡泽勇, 卢珊, 等, 2022.基于 CLM4.5 模式的季节冻土区土壤参数化方案的模拟研究[J].高原气象41(1): 93-106.DOI: 10.7522/j.issn.1000-0534.2021.00050.Fu C W
null
Hu Z Y Lu S, et al, 2022.A simulation study on soil parameterization scheme of seasonally frozen ground regions based on CLM4.5[J].Plateau Meteorology41(1): 93-106.DOI: 10.7522/j.issn.1000-0534.2021.00050 .
null
何玉洁, 宜树华, 郭新磊, 2017.青藏高原含砂砾石土壤导热率实验研究[J].冰川冻土39(2): 344-350.DOI: 10.7522/j.issn.1000-0240.2017.0039.He Y J
null
Yi S H Guo X L2017.Experimental study on thermal conductivity of soil with gravel on the Qinghai‐Tibet Plateau[J].Journal of Glaciology and Geocryology, 39: 344-250.DOI: 10.7522/j.issn.1000-0240.2017.0039 .
null
李瑞平, 史海滨, 赤江刚夫, 等, 2009.基于水热耦合模型的干旱寒冷地区冻融土壤水热盐运移规律研究[J].水利学报.40(4): 403-412.DOI: 10.13243/j.cnki.slxb.2009.04.016.Li R P
null
Shi H B Akae Takeo,et al,2009.Study on water‐heat‐salt transfer in soil freezing‐thawing based on Simultaneous Heat and Water model[J].Journal of Hydraulic engineering40(4):403-412.DOI:10.13243/j.cnki.slxb.2009.04.016 .
null
李若麟, 保鸿燕, 李课臣, 等, 2016.全球土壤湿度的记忆性及其气候效应[J].冰川冻土38(6): 1470-1481.DOI: 10.7522/j.issn.1000-0240.2016.0172.Li R L
null
Bao H Y Li K C, et al, 2016.The memory and climate effects of global soil moisture[J].Journal of Glaciology and Geocryology38(6): 1470-1481.DOI: 10.7522/j.issn.1000-0240.2016.0172 .
null
李时越, 杨凯, 王澄海, 2018.陆面模式 CLM4.5 在青藏高原土壤冻融期的偏差特征及其原因[J].冰川冻土40(2): 322-334.DOI: 10.7522/j.issn.1000-0240.2018.0037.Li S Y
null
Yang K Wang C H2018.Bias characteristics of land surface model (CLM4.5) over the Tibetan Plateau during soil freezing‐thawing period and its causes[J].Journal of Glaciology and Geocryology40(2): 322-334.DOI: 10.7522/j.issn.1000-0240.2018.0037 .
null
梁晓, 戴永久, 2008.通用陆面模式对土壤质地和亮度的敏感性分析[J].气候与环境研究13(5): 585-597.DOI: 10.3878/j.issn.1006-9585.2008.05.01.Liang X
null
Dai Y J2008.A sensitivity study of the common land model on soil texture and soil brightness[J].Climatic and Environmental Research13(5): 585-597.DOI: 10.3878/j.issn.1006-9585.2008.05.01 .
null
梁晓, 戴永久, 2010.陆面模式中土壤和植被经验参数随机误差的传播研究[J].大气科学34(2): 457-470.DOI: 10.3878/j.issn.1006-9895.2010.02.19.Liang X
null
Dai Y J2010.Soil and plant parameters‐related stochastic uncertainty propagation in the common land model[J].Chinese Journal of Atmospheric Sciences34(2): 457-470.DOI: 10.3878/j.issn.1006-9895.2010.02.19 .
null
刘新, 李伟平, 许晃雄, 等, 2007.青藏高原加热对东亚地区夏季降水的影响[J].高原气象26(6): 1287-1292.DOI: 10.7522/j.issn.1000-0534(2007)06-1287-06.Liu X
null
Li W P Xu H X, et al, 2007.The effect of Tibetan Plateau heating on the east Asian summer precipitation[J].Plateau Meteorology26(6): 1287-1292.DOI: 10.7522/j.issn.1000-0534(2007)06-1287-06 .
null
刘子莎, 吕世华, 胥朋飞, 等, 2024.BCC_AVIM陆面模式不同土壤垂直离散化方案对土壤水热输送的数值模拟[J].高原气象43(2): 303-317.DOI: 10.7522/j.issn.1000-0534.2023.00063.Liu Z S
null
S H Xu P F, et al, 2024.Numerical simulation of soil water and heat transport with different vertical discretization schemes BCC_AVIM land surface model[J].Plateau Meteorology43(2): 303-317.DOI: 10.7522/j.issn.1000-0534.2023.00063 .
null
罗斯琼, 吕世华, 张宇, 等, 2009.青藏高原中部土壤热传导率参数化方案的确立及在数值模式中的应用[J].地球物理学版52(4): 919-928.DOI: 10.3968/j.issn.0001-5733.2009.04.008.Luo S Q
null
S H Zhang Y, et al, 2009.Soil thermal conductivity parameterization establishment and application in numerical model of central Tibetan Plateau[J].Chinese Journal of Geophysics52(4): 919-928, DOI: 10.3969/j.issn.0001-5733.2009.04.008 .
null
马翠丽, 吕世华, 潘永洁, 等 , 2020a.砾石参数化对青藏高原陆面过程模拟的影响及敏感性分析[J].高原气象39(6): 1219-1231.DOI: 10.7522/j.issn.1000-0534.2020.00005.Ma C L , LüSH, PanYJ, et al, 2020a.Impact and sensitivity analysis of gravel parameterization on simulation of land surface processes on the Qinghai‐Xizang Plateau[J].Plateau Meteorology, 39(6): 1219-1231.DOI: 10.7522/j.issn.1000-0534.2020. 00005 .
null
马翠丽, 吕世华, 潘永洁, 等 , 2020b.陆面模式砾石参数化在 BCC_AVIM 陆面过程模式中的应用及检验[J].高原气象39(6): 1232-1245.DOI: 10.7522/j.issn.1000-0534.2019.00129.Ma C L , LüSH, PanYJ, et al, 2020b.Application and test of land surface model gravel parameterization in BCC_AVIM land surface model[J].Plateau Meteorology, 39(6): 1232-1245.DOI: 10.7522/j.issn.1000-0534.2019.00129 .
null
马湘宜, 张宇, 吴统文, 等, 2020.根系吸水过程参数化方案对青藏高原陆面过程模拟的影响研究[J].大气科学44(1): 211-224.DOI: 10.3878/j.issn.1006-9895.1902.18246.Ma X Y
null
Zhang Y Wu T W, et al, 2020.Effect of the root‐water‐uptake process parameterization schemes on the land‐surface‐process simulation in the Qinghai‐Tibet Plateau[J].Chinese Journal of Atmospheric Sciences44(1): 211-224.DOI: 10.3878/j.issn.1006-9895.1902.18246 .
null
潘永洁, 吕世华, 高艳红, 等, 2015.砾石对青藏高原土壤水热特性影响的数值模拟[J].高原气象34(5): 1224-1236.DOI: 10.7522/j.issn.1000-0534.2014.00055.Pan Y J
null
S H Gao Y H, et al, 2015.Simulation of influence of gravel on soil thermal and hydraulic properties on Qinghai‐Xizang Plateau[J].Plateau Meteorology34(5): 1224-1236.DOI: 10.7522/j.issn.1000-0534.2014.00055 .
null
秦大河, 2018. 冰冻圈科学概论.修订版[M].北京: 科学出版社.Qin D H, 2018.
null
Introduction to cryospheric science.Revised Edition[M].Beijing: Science Press.
null
任余龙,李振朝,蒋俊霞,等,2022. 三种土壤导热率模型对中国北方地表温度的模拟 [J].高原气象41(5):1315-1324.DOI:10. 7522/j. issn. 1000-0534. 2021. 00055.Ren Y L
null
Li Z C Jiang J X,et al,2022.Simulation of land surface temperature in northern China by three soil thermal conductivity models [J].Plateau Meteorology41(5):1315-1324.DOI:10. 7522/j. issn. 1000-0534. 2021. 00055.
null
孙菽芬, 2005.陆面过程的物理、 生化机理和参数化模型[M].北京: 气象出版社.Sun S F, 2005.Physical, biochemical and parametric models of land surface processes[M].Beijing: China Meteorological Press.
null
孙岩, 王一博, 孙哲, 等, 2017.有机质对青藏高原多年冻土活动层土壤持水性能的影响[J].中国沙漠37(2): 288-295.DOI: 10.7522/j.issn.1000-694X.2016.00083.Sun Y
null
Wang Y B Sun Z, et al, 2017.Impact of soil organic matter on water hold capacity in permafrost active layer in the Tibetan Plateau[J].Journal of Desert Research37(2): 288-295.DOI: 10.7522/j.issn.1000-694X.2016.00083 .
null
王澄海, 杨凯, 张飞民, 等, 2021.青藏高原土壤冻融过程的气候效应: 进展和展望[J].高原气象40(6): 1318-1336.DOI: 10.7522/j.issn.1000-0534.2021.zk021.Wang C H
null
Yang K Zhang F M, et al, 2021.Climate effects of soil freeze‐thaw process over Qinghai‐Xizang Plateau: progress and perspectives[J].Plateau Meteorology40(6): 1318-1336.DOI: 10.7522/j.issn.1000-0534.2021.zk021 .
null
王蓝翔, 董慧科, 龚平, 等, 2021.多年冻土退化下碳, 氮和污染物循环研究进展[J].冰川冻土43(5): 1365-1382.DOI: 10.7522/j.issn.1000-0240.2021.0090.Wang L X
null
Dong H K Gong P, et al, 2021.Cycling of carbon, nitrogen and pollutants under permafrost degradation: a review[J].Journal of Glaciology and Geocryology43(5): 1365-1382.DOI: 10.7522/j.issn.1000-0240.2021.0090 .
null
王树舟,马耀明,吴文玉,2023.基于Noah‐MP陆面模式的青藏高原地表感热和潜热通量分布及变化特征[J].高原气象42(1):25-34.DOI: 10.7522/j.issn.1000-0534.2022.00036.Wang S Z
null
Ma Y M Wu W Y2023.Characteristics of distributions and changes of surface sensible and latent heat fluxes on the Qinghai‐Xizang Plateau based on the Noah‐MP Land Surface Model[J].Plateau Meteorology42(1): 25-34.DOI: 10.7522/j.issn.1000-0534.2022.00036.
null
夏坤, 罗勇, 李伟平, 2011.青藏高原东北部土壤冻融过程的数值模拟[J].科学通报56(22): 11.DOI: 10.1088/1674-1137/35/2/019.Xia K
null
Luo Y Li W P2011.Simulation of freezing and melting of soil on the northeast Tibetan Plateau[J].Chinese Science Bull, 56.DOI: 10.1007/s11434-011-4542-8 .
null
胥朋飞, 吕世华, 马翠丽, 等, 2022.BCC_AVIM 陆面过程模式冻融过程参数化的改进与检验[J].高原气象41(2): 349-362.DOI: 10.7522/j.issn.1000-0534.2021.00121.Xu P F
null
S H Ma C L, et al, 2022.Improvement and verification of freezing‐thawing process parameterization of BCC_AVIM land surface process model[J].Plateau Meteorology[J].41(2): 349-362.DOI: 10.7522/j.issn.1000-0534.2021.00121 .
null
徐斅祖, 王家澄, 张立新, 2010.冻土物理学[M].北京: 科学出版社.Xu X Z, Wang J C, Zhang L X, 2010.Permafrost physics[M].Beijing: Science Press.
null
杨凡, 吕世华, 张少波, 等, 2023.青藏高原土壤冻融参数化改进及其在BCC_CSM气候模式中的效果对比[J].高原气象42(5): 1093-1106.DOI: 10.7522/j.issn.1000-0534.2023.00002.Yang F
null
Lyu S H Zhang S B, et al, 2023.Improvement of soil freeze‐thaw parameterization on the Qinghai‐Xizang(Tibet)Plateau and its effect comparison in BCC_CSM climate model[J].Plateau Meteorology42(5): 1093-1106.DOI: 10.7522/j.issn.1000-0534.2023.00002 .
null
张戈, 赖欣, 刘康, 2023.黄河源区玛曲土壤冻融过程中地表水热交换特征分析[J].高原气象42(3): 575-589.DOI: 10.7522/j.issn.1000 0534.2022.00083.Zhang G
null
Lai X Liu K2023.Characteristics of surface water and heat exchange during soil freezing and thawing of Maqu station in the source area of the Yellow River[J].Plateau Meteorology42(3): 575-589.DOI: 10.7522/j.issn.1000 0534.2022.00083 .
null
张永莉, 左洪超,高晓清, 等, 2023.冬半年青藏高原绕流与中国降水和气温的关系[J].高原气象42(3): 529-542.DOI: 10.7522/j.issn.1000-0534.2023.00018.Zhang Y L
null
Zuo H C Gao X Q, et al, 2023.The relationship between the flow around the Qinghai-Xizang Plateau and the precipitation and temperature in China in winter half-year[J].Plateau Meteorology42(3): 529-542.DOI: 10.7522/j.issn.1000-0534.2023.00018.
null
赵林, 盛煜, 陈继, 等, 2019.青藏高原多年冻土及变化[M].北京: 科学出版社.Zhao L, Shen Y, Chen J, et al, 2019.Permafrost and its changes on Tibetan Plateau[M].Beijing: Science Press.
Outlines

/