null | Balland V, Arp P A, 2005.Modeling soil thermal conductivities over a wide range of conditions[J]. Journal of Environmental Engineering and Science, 4(6): 549-558.DOI: 10.1139/S05-007 . |
null | Bao H Y, Koike T, Yang K, et al, 2016.Development of an enthalpy-based frozen soil model and its validation in a cold region in China[J]. Journal of Geophysical Research: Atmospheres, 121(10): 5259-5280.DOI: 10.1002/ 2015jd024451 . |
null | Barry-Macaulay D, Bouazza A, Wang B, et al, 2015.Evaluation of soil thermal conductivity models[J]. Canadian Geotechnical Journal, 52(11): 1892-1900, DOI: 10.1139/cgj-2014-0518 . |
null | Benson C H, Othman M A, 1993.Hydraulic conductivity of compacted clay frozen and thawed in situ[J]. Journal of Geotechnical Engineering, 119(2): 276-294.DOI: 10.1061/(ASCE)0733-9410(1993)119: 2(276 ). |
null | Blyth E M, Arora V K, Clark D B, et al, 2021.Advances in land surface modelling[J]. Current Climate Change Reports, 7(2): 45-71.DOI: 10.1007/s40641-021-00171-5 . |
null | Chadburn S, Burke E, Essery R, et al, 2015.An improved representation of physical permafrost dynamics in the JULES land-surface model[J]. Geoscientific Model Development, 8(5): 1493-1508.DOI: 10.5194/gmd-8-1493-2015 . |
null | Chou Y L, Wang L J, 2021.Seasonal freezing-thawing process and hydrothermal characteristics of soil on the Loess Plateau, China[J]. Journal of Mountain Science, 18(11): 3082-3098.DOI: 10.1007/s11629-020-6599-9 . |
null | Clapp R B, Hornberger G M, 1978.Empirical equations for some soil hydraulic properties[J]. Water Resources Research, 14(4): 601-604.DOI: 10.1029/WR014i004p00601 . |
null | Cosenza P, Guérin R, Tabbagh A, 2003.Relationship between thermal conductivity and water content of soils using numerical modelling[J]. European Journal of Soil Science, 54(3): 581-588.DOI: 10.1046/j.1365-2389.2003.00539.x . |
null | C?te J, Konrad J M, 2005.A generalized thermal conductivity model for soils and construction materials[J]. Canadian Geotechnical Journal, 42(2): 443-458.DOI: 10.1139/t04-106 . |
null | Cui Y, Wang C H, 2009.Comparison of sensible and latent heat fluxes during the transition season over the western Tibetan Plateau from reanalysis datasets[J]. Progress in Natural Science, 19(6): 719-726.DOI: 10.1016/j.pnsc.2008.11.001 . |
null | Dai Y J, Wei N, Yuan H, et al, 2019.Evaluation of soil thermal conductivity schemes for use in land surface modeling[J]. Journal of Advances in Modeling Earth Systems, 11(11): 3454-3473.DOI: 10.1029/2019MS001723 . |
null | De Lannoy G J, Koster R D, Reichle R H, et al, 2014.An updated treatment of soil texture and associated hydraulic properties in a global land modeling system[J]. Journal of Advances in Modeling Earth Systems, 6(4): 957-979.DOI: 10.1002/2014MS000330 . |
null | De Vries D A, 1963.Thermal properties of soils[M].In Physics of Plant Environment.Amsterdam: North‐Holland Publ.Co. |
null | Deng M S, Meng X H, Lu Y Q, et al, 2021.Impact and sensitivity analysis of soil water and heat transfer parameterizations in community land surface model on the Tibetan Plateau[J]. Journal of Advances in Modeling Earth Systems, 13(9): e2021MS002670.DOI: 10.1029/2021MS002670 . |
null | Devoie é G, Craig J R, 2020.A semianalytical interface model of soil freeze/thaw and permafrost evolution[J]. Water Resources Research, 56(8): e2020WR027638.DOI: 10.1029/2020WR027638 . |
null | Du Y Z, Li R, Zhao L, et al, 2020.Evaluation of 11 soil thermal conductivity schemes for the permafrost region of the central Qinghai-Tibet Plateau[J]. Catena, 193: 104608.DOI: 10.1016/j.catena.2020.104608 . |
null | Ekici A, Beer C, Hagemann S, et al, 2014.Simulating high-latitude permafrost regions by the JSBACH terrestrial ecosystem model[J]. Geoscientific Model Development, 7(2): 631-647.DOI: 10.5194/tc-9-1343-2015 . |
null | Farouki O T, 1981.The thermal properties of soils in cold regions[J]. Cold Regions Science and Technology, 5(1): 67-75.DOI: 10.1016/0165-232X(81)90041-0 . |
null | Fisher R A, Koven C D, 2020.Perspectives on the future of land surface models and the challenges of representing complex terrestrial systems[J]. Journal of Advances in Modeling Earth Systems, 12(4): e2018MS001453.DOI: 10.1029/2018MS001453 . |
null | Fuchs M, Campbell G S, Papendick R I, 1978.An analysis of sensible and latent heat flow in a partially frozen unsaturated soil[J]. Soil Science Society of America Journal, 42: 379-385.DOI: 10.2136/sssaj1978.03615995004200030001x . |
null | Gao J Q, Xie Z H, Wang A W, et al, 2016.Numerical simulation based on two-directional freeze and thaw algorithm for thermal diffusion model[J]. Applied Mathematics and Mechanics, 37(11): 1467-1478.DOI: 10.1007/s10483-016-2106-8 . |
null | Gao J Q, Xie Z H, Wang A W, et al, 2019.A new frozen soil parameterization including frost and thaw fronts in the Community Land Model[J]. Journal of Advances in Modeling Earth Systems, 11(3): 659-679.DOI: 10.1029/2018MS001399 . |
null | Gao Y H, Li K, Chen F, et al, 2015.Assessing and improving Noah MP land model simulations for the central Tibetan Plateau[J]. Journal of Geophysical Research: Atmosphere, 120: 9258 9278.DOI: 10.1002/ 2015JD023404 . |
null | Guo D, Wang H, 2013.Simulation of permafrost and seasonally frozen ground conditions on the Tibetan Plateau, 1981-2010[J]. Journal of Geophysical Research: Atmospheres, 118(11): 5216-5230.DOI: 10.1002/jgrd.50457 . |
null | Guo D L, Yang M X, Wang H J, 2011.Characteristics of land surface heat and water exchange under different soil freeze/thaw conditions over the central Tibetan Plateau[J]. Hydrological Processes, 25(16): 2531-2541.DOI: 10.1002/hyp.8025 . |
null | Guo L, Yu Q H, Yin N, et al, 2022.Effect of freeze-thaw cycle on hydraulic conductivity of compacted clayey soil[J]. Journal of Mountain Science, 19(2): 606-614.DOI: 10.1007/s11629-021-6683-9 . |
null | Hansson K, ?im?nek J, Mizoguchi M, et al, 2004.Water flow and heat transport in frozen soil: Numerical solution and freeze-thaw applications[J]. Vadose Zone Journal, 3(2): 693-704.DOI: 10.2136/vzj2004.0693 . |
null | Hayashi M, 2013.The cold vadose zone: Hydrological and ecological significance of frozen-soil processes[J]. Vadose Zone Journal, 12(4).DOI: 10.2136/vzj2013.03.0064 . |
null | Johansen O, 1977.Thermal conductivity of soils[D].Norwegian Institute of Technology. |
null | Jumikis A, 1977.Thermal geotechnics[M].New Brunswick, NJ: Rutgers University Press:. |
null | Kv?rn? S H, ?ygarden L, 2006.The influence of freeze-thaw cycles and soil moisture on aggregate stability of three soils in Norway[J]. Catena, 67(3): 175-182.DOI: 10.1016/j.catena.2006.03.011 . |
null | Lawrence D M, Fisher R A, Koven C D, et al, 2019.The Community Land Model version 5: Description of new features, benchmarking, and impact of forcing uncertainty[J]. Journal of Advances in Modeling Earth Systems, 11(12): 4245-4287.DOI: 10.1029/2018MS001583 . |
null | Lawrence D M, Slater A G, 2008.Incorporating organic soil into a global climate model[J].Climate Dynamics, 30: 145-160.DOI 10.1007/s00382-007-0278-1. |
null | Lawrence D M, Slater A G, Swenson S C, 2012.Simulation of present-day and future permafrost and seasonally frozen ground conditions in CCSM4[J]. Journal of Climate, 25(7): 2207-2225.DOI: 10.1175/JCLI-D-11-00334.1 . |
null | Li Q, Sun S F, Xue Y K, 2010.Analyses and development of a hierarchy of frozen soil models for cold region study[J]. Journal of Geophysical Research.115: D03107.DOI: 10.1029/2009JD012530 . |
null | Li R C, Xie J B, Xie Z H, et al, 2023.Coupling of the calculated freezing and thawing front parameterization in the earth system model CAS-ESM[J]. Advances in Atmospheric Sciences, 1-18.DOI: 10.1007/s00376-023-2203-x . |
null | Li X Y, 2003.Gravel-sand mulch for soil and water conservation in the semiarid loess region of northwest China[J]. Catena, 52(2): 105-127.DOI: 10.1016/S0341-8162(02)00181-9 . |
null | Lu J G, Wan X S, Yan Z R, et al, 2022.Modeling thermal conductivity of soils during a freezing process[J]. Heat and Mass Transfer, 58(2): 283-293.DOI: 10.1007/s00231-021-03110-0 . |
null | Lu S, Ren T, Gong Y, et al, 2007.An improved model for predicting soil thermal conductivity from water content at room temperature[J]. Soil Science Society of America Journal, 71(1): 8-14.DOI: 10.2136/sssaj2006.0041 . |
null | Lundin L C, 1990.Hydraulic properties in an operational model of frozen soil[J]. Journal of Hydrology, 118(1-4): 289-310.DOI: 10.1016/0022-1694(90)90264-X . |
null | Luo J X, Huang A N, Lyu S H, et al, 2023.Improved performance of CLM5.0 model in frozen soil simulation over tibetan plateau by implementing the vegetation emissivity and gravel hydrothermal schemes[J]. Journal of Geophysical Research: Atmospheres, 128(6): e2022JD038021.DOI: 10.1029/2022JD038021 . |
null | Luo S Q, Chen B L, Lyu S H, et al, 2018.An improvement of soil temperature simulations on the Tibetan Plateau[J]. Sciences in Cold and Arid Regions, 10(1): 80-94.DOI: 10.3724/SP.J. 1226.2018.00080 . |
null | Luo S Q, Fang X W, Lyu S H, et al, 2017.Improving CLM4.5 simulations of land-atmosphere exchange during freeze-thaw processes on the Tibetan Plateau[J]. Journal of Meteorological Research, 31(5): 916-930.DOI: 10.1007/s13351-017-6063-0 . |
null | Ma Y M, Hu Z Y, Xie Z P, et al, 2020.A long-term (2005-2016) dataset of hourly integrated land-atmosphere interaction observations on the Tibetan Plateau[J]. Earth System Science Data, 12(4): 2937-2957.DOI: 10.5194/essd-12-2937-2020 . |
null | Masson V, Moigne P L, Martin E, et al, 2013.The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of Earth surface variables and fluxes[J]. Geoscientific Model Development, 6(4): 929-960.DOI: 10.5194/gmd-6-929-2013 |
null | McCauley C A, White D M, Lilly M R, et al, 2002.A comparison of hydraulic conductivities, permeabilities and infiltration rates in frozen and unfrozen soils[J]. Cold Regions Science and Technology, 34(2): 117-125.DOI: 10.1016/S0165-232X(01)00064-7 . |
null | Melton J R, Verseghy D L, Sospedra-Alfonso R, et al, 2019.Improving permafrost physics in the coupled Canadian Land Surface Scheme (v.3.6.2) and Canadian Terrestrial Ecosystem Model (v.2.1) (CLASS-CTEM)[J]. Geoscientific Model Development, 12(10): 4443-4467.DOI: 10.5194/gmd-12-4443-2019 . |
null | Mohammed A A, Kurylyk B L, Cey E E, et al, 2018.Snowmelt infiltration and macropore flow in frozen soils: overview, knowledge gaps, and a conceptual framework[J]. Vadose Zone Journal, 17(1): 1-15.DOI: 10.2136/vzj2018.04.0084 . |
null | Muller S W, 1945.Permafrost, or permanently frozen ground: and related engineering problems[M].Army map service, US Army. |
null | Niu G Y, Yang Z L, 2006.Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale[J]. Journal of Hydrometeorology, 7: 937-952.DOI: 10.1175/JHM538.1 . |
null | Ochsner T, 2019.Rain or shine: an introduction to soil physical properties and processes[J]. Creative Commons Attribution, Wise Oklahoma State University Library Open Textbook Initiative Stillwater, Oklahoma, USA.DOI: 1022488/okstate.21.000000 . |
null | Oleson K W, Niu G Y, Yang Z L, et al, 2008.Improvements to the Community Land Model and their impact on the hydrological cycle[J]. Journal of Geophysical Research, 113: G01021.DOI: 10.1029/2007JG000563 . |
null | Overduin P P, Kane D L, Van Loon W K, 2006.Measuring thermal conductivity in freezing and thawing soil using the soil temperature response to heating[J]. Cold Regions Science and Technology, 45(1): 8-22.DOI: 10.1016/j.coldregions.2005.12.003 . |
null | Pan Y J, Lyu S H, Li S S, et al, 2017.Simulating the role of gravel in freeze-thaw process on the Qinghai-Tibet Plateau[J].Theoretical and Applied Climatology, 127: 1011-1022.DOI 10.1007/s00704-015-1684-7. |
null | Philip J, De Vries D D, 1957.Moisture movement in porous materials under temperature gradients[J]. Eos, Transactions American Geophysical Union, 38(2): 222-232.DOI: 10.1029/TR038i002p00222 . |
null | Pollack H N, Huang S, 2000.Climate reconstruction from subsurface temperatures[J]. Annual Review of Earth and Planetary Sciences, 28(1): 339-365.DOI: 10.1146/annurev.earth.28.1.339 . |
null | Ren J, Men L L, Zhang W B, et al, 2019.A new empirical model for the estimation of soil thermal conductivity[J]. Environmental Earth Sciences, 78: 1-16.DOI: 10.1007/s12665-019-8360-7 . |
null | Seyfried M, Flerchinger G, 1994.Influence of frozen soil on rangeland erosion[J]. Variability in Rangeland Water Erosion Processes, 38: 67-82.DOI: 10.2136/sssaspecpub38.c6 . |
null | Shangguan W, Dai Y J, Duan Q Y, et al, 2014.A global soil data set for earth system modeling[J]. Journal of Advances in Modeling Earth Systems, 6(1): 249-263.DOI: 10.1002/2013MS000293 . |
null | Soong J L, Phillips C L, Ledna C, et al, 2020.CMIP5 models predict rapid and deep soil warming over the 21st century[J]. Journal of Geophysical Research: Biogeosciences, 125(2): e2019JG005266.DOI: 10.1029/2019JG005266 . |
null | Spaans E J A, Baker J M, 1996.The soil freezing characteristic: its measurement and similarity to the soil moisture characteristic[J]. Soil Science Society of America Journal, 60: 13-19.DOI: 10.2136/sssaj1996.03615995006000010005x . |
null | Sun H, Liu X D, 2021.Impacts of dynamic and thermal forcing by the Tibetan Plateau on the precipitation distribution in the Asian arid and monsoon regions[J]. Climate Dynamics, 56(7-8): 2339-2358.DOI: 10.1007/s00382-020-05593-9 . |
null | Sun J, Chen Y Y, Yang K, et al, 2021.Influence of organic matter on soil hydrothermal processes in the Tibetan Plateau: observation and parameterization[J]. Journal of Hydrometeorology, 22(10): 2659-2674.DOI: 10.1175/JHM-D-21-0059.1 . |
null | Swenson S C, Lawrence D M, Lee H, 2012.Improved simulation of the terrestrial hydrological cycle in permafrost regions by the Community Land Model[J]. Journal of Advances in Modeling Earth Systems, 4: M08002.DOI: 10.1029/2012MS000165 . |
null | Tarnawski V R, Leong W H, 2012.A series‐parallel model for estimating the thermal conductivity of unsaturated soils[J]. International Journal of Thermophysics, 33(7): 1191-1218.DOI: 10.1007/s10765‐012‐1282‐1 . |
null | Turetsky M R, Abbott B W, Jones M C, et al, 2019.Permafrost collapse is accelerating carbon release[J]. Nature, 569(7754): 32-34.DOI: 10.1038/d41586-019-01313-4 . |
null | Varney R M, Chadburn S E, Burke E J, et al, 2022.Evaluation of soil carbon simulation in CMIP6 Earth system models[J]. Biogeosciences, 19: 4671-4704.DOI: 10.5194/bg-19-4671-2022 . |
null | Wang C H, Yang K, 2018.A new scheme for considering soil water‐heat transport coupling based on Community Land Model: Model description and preliminary validation[J]. Journal of Advances in Modeling Earth Systems, 10(4): 927-950.DOI: 10.1002/2017MS001148 . |
null | Wang J Y, Luo S Q, Li Z G, et al, 2019.The freeze/thaw process and the surface energy budget of the seasonally frozen ground in the source region of the Yellow River[J]. Theoretical and Applied Climatology, 138: 1631-1646.DOI: 10.1007/s00704-019-02917-6 . |
null | Weismüller J, Wollschl?ger U, Boike J, et al, 2011.Modeling the thermal dynamics of the active layer at two contrasting permafrost sites on Svalbard and on the Tibetan Plateau[J]. The Cryosphere, 5(3): 741-757.DOI: 10.5194/tc-5-741-2011 . |
null | Westermann S, Langer M, Boike J, et al, 2016.Simulating the thermal regime and thaw processes of ice‐rich permafrost ground with the land‐surface model CryoGrid 3[J]. Geoscientific Model Development, 9(2): 523-546.DOI: 10.5194/gmd-9-523-2016 . |
null | Westermann S, Schuler T, Gisn?s K, et al, 2013.Transient thermal modeling of permafrost conditions in Southern Norway[J]. The Cryosphere, 7(2): 719-739.DOI: 10.5194/tc-7-719-2013 . |
null | Woo M K, Arain M, Mollinga M, et al, 2004.A two‐directional freeze and thaw algorithm for hydrologic and land surface modelling[J]. Geophysical Research Letters, 31(12).DOI: 10.1029/2004GL019475 . |
null | |
null | Wu X D, Zhao L, Fang H B, et al, 2012.Soil enzyme activities in permafrost regions of the western Qinghai‐Tibetan Plateau[J]. Soil Science Society of America Journal, 76(4): 1280-1289.DOI: 10.2136/sssaj2011.0400 . |
null | Xie C W, William A G, 2013.A simple thaw‐freeze algorithm for a multi‐layered soil using the Stefan Equation[J]. Permafrost and Periglacial Processes, 24(3): 252-260.DOI: 10.1002/ppp.1770 . |
null | Xie J B, Xie Z H, Jia B H, et al, 2021.Coupling of the CAS‐LSM Land‐Surface Model With the CAS‐FGOALS‐g3 Climate System Model[J]. Journal of Advances in Modeling Earth Systems, 13(1): e2020MS002171.DOI: 10.1029/2020MS002171 . |
null | Xie Z H, Liu S, Zeng Y J, et al, 2018.A high‐resolution land model with groundwater lateral flow, water use, and soil freeze‐thaw front dynamics and its applications in an endorheic basin[J]. Journal of Geophysical Research: Atmospheres, 123(14): 7204-7222.DOI: 10.1029/2018JD028369 . |
null | Xie Z H, Wang L H, Wang Y, et al, 2020.Land surface model CAS‐LSM: Model description and evaluation[J]. Journal of Advances in Modeling Earth Systems, 12(12): e2020MS002339.DOI: 10.1029/2020MS002339 . |
null | Yan H N, He H L, Dyck M, et al, 2019, A generalized model for estimating effective soil thermal conductivity based on the Kasubuchi algorithm[J]. Geoderma, 353: 227-242.DOI: 10.1016/j.geoderma.2019.06.031 . |
null | Yang K, Wang C, Li S, 2018.Improved simulation of frozen-thawing process in land surface model (CLM4.5)[J]. Journal of Geophysical Research: Atmospheres, 123: 13238-13258.DOI: 10. 1029/2017JD028260 . |
null | Yang S H, Li R, Wu T H, et al, 2021.Evaluation of soil thermal conductivity schemes incorporated into CLM5.0 in permafrost regions on the Tibetan Plateau[J]. Geoderma, 401: 115330.DOI: 10.1016/j.geoderma.2021.115330 . |
null | Yi S, Chen J, Wu Q, et al, 2013.Simulating the role of gravel on the dynamics of permafrost on the Qinghai‐Tibetan Plateau[J]. The Cryosphere Discussions, 7(5): 4703-4740.DOI: 10.5194/tcd-7-4703-2013 . |
null | Yu L Y, Zeng Y J, Wen J, et al, 2018.Liquid‐vapor‐air flow in the frozen soil[J]. Journal of Geophysical Research: Atmospheres, 123(14): 7393-7415.DOI: 10.1029/2018JD028502 . |
null | Zhang L, Ren F P, Li H, et al, 2021.The influence mechanism of freeze‐thaw on soil erosion: A review[J]. Water, 13(8): 1010.DOI: 10.3390/w13081010 . |
null | Zhang T J, Barry R G, Knowles K, et al, 2008.Statistics and characteristics of permafrost and ground‐ice distribution in the Northern Hemisphere[J]. Polar Geography, 31: 47-68.DOI: 10.1080/10889370802175895 . |
null | Zhao Y, Nan Z T, Ji H L, et al, 2022.Convective heat transfer of spring meltwater accelerates active layer phase change in Tibet permafrost areas[J]. The Cryosphere, 16(3): 825-849.DOI: 10.5194/tc-16-825-2022 . |
null | Zhou J Z, Meng X C, Wei C F, et al, 2020.Unified soil freezing characteristic for variably‐saturated saline soils[J]. Water Resources Research, 56: e2019WR026648.DOI: 10.1029/2019WR026648 . |
null | Zhou J Z, Wei C F, Lai Y M, et al, 2018.Application of the generalized Clapeyron equation to freezing point depression and unfrozen water content[J]. Water Resources Research, 54: 9412-9431.DOI: 10.1029/2018WR023221 . |
null | |
null | Wei Y Q, Yan H J, et al, 1998.Influence of organic matter content on soil hydrodynamic parameters[J]. Acta Pedologica Sinica, 35(1): 1-9.DOI: 10.11766/trxb1 99610170101 . |
null | |
null | Yang K, Zheng D, et al, 2022.Impact of Soil Organic Matter Content on Soil Moisture and Temperature at Different Depths in the Central Qinghai‐Xizang Plateau[J]. Plateau Meteorology, 41(5): 1097-1108.DOI: 10.7522/j.issn.1000-0534.2021.00039 . |
null | |
null | Hu Z Y, Lu S, et al, 2022.A simulation study on soil parameterization scheme of seasonally frozen ground regions based on CLM4.5[J]. Plateau Meteorology, 41(1): 93-106.DOI: 10.7522/j.issn.1000-0534.2021.00050 . |
null | |
null | Yi S H, Guo X L, 2017.Experimental study on thermal conductivity of soil with gravel on the Qinghai‐Tibet Plateau[J]. Journal of Glaciology and Geocryology, 39: 344-250.DOI: 10.7522/j.issn.1000-0240.2017.0039 . |
null | |
null | Shi H B, Akae Takeo,et al, 2009.Study on water‐heat‐salt transfer in soil freezing‐thawing based on Simultaneous Heat and Water model[J]. Journal of Hydraulic engineering, 40(4):403-412.DOI: 10.13243/j.cnki.slxb.2009.04.016 . |
null | |
null | Bao H Y, Li K C, et al, 2016.The memory and climate effects of global soil moisture[J]. Journal of Glaciology and Geocryology, 38(6): 1470-1481.DOI: 10.7522/j.issn.1000-0240.2016.0172 . |
null | |
null | Yang K, Wang C H, 2018.Bias characteristics of land surface model (CLM4.5) over the Tibetan Plateau during soil freezing‐thawing period and its causes[J]. Journal of Glaciology and Geocryology, 40(2): 322-334.DOI: 10.7522/j.issn.1000-0240.2018.0037 . |
null | |
null | Dai Y J, 2008.A sensitivity study of the common land model on soil texture and soil brightness[J]. Climatic and Environmental Research, 13(5): 585-597.DOI: 10.3878/j.issn.1006-9585.2008.05.01 . |
null | |
null | Dai Y J, 2010.Soil and plant parameters‐related stochastic uncertainty propagation in the common land model[J]. Chinese Journal of Atmospheric Sciences, 34(2): 457-470.DOI: 10.3878/j.issn.1006-9895.2010.02.19 . |
null | |
null | |
null | |
null | Lü S H, Xu P F, et al, 2024.Numerical simulation of soil water and heat transport with different vertical discretization schemes BCC_AVIM land surface model[J]. Plateau Meteorology, 43(2): 303-317.DOI: 10.7522/j.issn.1000-0534.2023.00063 . |
null | |
null | Lü S H, Zhang Y, et al, 2009.Soil thermal conductivity parameterization establishment and application in numerical model of central Tibetan Plateau[J]. Chinese Journal of Geophysics, 52(4): 919-928, DOI: 10.3969/j.issn.0001-5733.2009.04.008 . |
null | |
null | |
null | |
null | Zhang Y, Wu T W, et al, 2020.Effect of the root‐water‐uptake process parameterization schemes on the land‐surface‐process simulation in the Qinghai‐Tibet Plateau[J]. Chinese Journal of Atmospheric Sciences, 44(1): 211-224.DOI: 10.3878/j.issn.1006-9895.1902.18246 . |
null | |
null | Lü S H, Gao Y H, et al, 2015.Simulation of influence of gravel on soil thermal and hydraulic properties on Qinghai‐Xizang Plateau[J]. Plateau Meteorology, 34(5): 1224-1236.DOI: 10.7522/j.issn.1000-0534.2014.00055 . |
null | 秦大河, 2018. 冰冻圈科学概论.修订版[M].北京: 科学出版社.Qin D H, 2018. |
null | Introduction to cryospheric science.Revised Edition[M].Beijing: Science Press. |
null | |
null | Li Z C, Jiang J X,et al, 2022.Simulation of land surface temperature in northern China by three soil thermal conductivity models [J]. Plateau Meteorology, 41(5):1315-1324.DOI: 10. 7522/j. issn. 1000-0534. 2021. 00055. |
null | 孙菽芬, 2005.陆面过程的物理、 生化机理和参数化模型[M].北京: 气象出版社.Sun S F, 2005.Physical, biochemical and parametric models of land surface processes[M].Beijing: China Meteorological Press. |
null | |
null | Wang Y B, Sun Z, et al, 2017.Impact of soil organic matter on water hold capacity in permafrost active layer in the Tibetan Plateau[J]. Journal of Desert Research, 37(2): 288-295.DOI: 10.7522/j.issn.1000-694X.2016.00083 . |
null | |
null | Yang K, Zhang F M, et al, 2021.Climate effects of soil freeze‐thaw process over Qinghai‐Xizang Plateau: progress and perspectives[J]. Plateau Meteorology, 40(6): 1318-1336.DOI: 10.7522/j.issn.1000-0534.2021.zk021 . |
null | |
null | Dong H K, Gong P, et al, 2021.Cycling of carbon, nitrogen and pollutants under permafrost degradation: a review[J]. Journal of Glaciology and Geocryology, 43(5): 1365-1382.DOI: 10.7522/j.issn.1000-0240.2021.0090 . |
null | |
null | Ma Y M, Wu W Y, 2023.Characteristics of distributions and changes of surface sensible and latent heat fluxes on the Qinghai‐Xizang Plateau based on the Noah‐MP Land Surface Model[J]. Plateau Meteorology, 42(1): 25-34.DOI: 10.7522/j.issn.1000-0534.2022.00036. |
null | |
null | Luo Y, Li W P, 2011.Simulation of freezing and melting of soil on the northeast Tibetan Plateau[J]. Chinese Science Bull, 56.DOI: 10.1007/s11434-011-4542-8 . |
null | |
null | Lü S H, Ma C L, et al, 2022.Improvement and verification of freezing‐thawing process parameterization of BCC_AVIM land surface process model[J]. Plateau Meteorology[J]. 41(2): 349-362.DOI: 10.7522/j.issn.1000-0534.2021.00121 . |
null | 徐斅祖, 王家澄, 张立新, 2010.冻土物理学[M].北京: 科学出版社.Xu X Z, Wang J C, Zhang L X, 2010.Permafrost physics[M].Beijing: Science Press. |
null | |
null | Lyu S H, Zhang S B, et al, 2023.Improvement of soil freeze‐thaw parameterization on the Qinghai‐Xizang(Tibet)Plateau and its effect comparison in BCC_CSM climate model[J]. Plateau Meteorology, 42(5): 1093-1106.DOI: 10.7522/j.issn.1000-0534.2023.00002 . |
null | |
null | Lai X, Liu K, 2023.Characteristics of surface water and heat exchange during soil freezing and thawing of Maqu station in the source area of the Yellow River[J]. Plateau Meteorology, 42(3): 575-589.DOI: 10.7522/j.issn.1000 0534.2022.00083 . |
null | |
null | Zuo H C, Gao X Q, et al, 2023.The relationship between the flow around the Qinghai-Xizang Plateau and the precipitation and temperature in China in winter half-year[J]. Plateau Meteorology, 42(3): 529-542.DOI: 10.7522/j.issn.1000-0534.2023.00018. |
null | 赵林, 盛煜, 陈继, 等, 2019.青藏高原多年冻土及变化[M].北京: 科学出版社.Zhao L, Shen Y, Chen J, et al, 2019.Permafrost and its changes on Tibetan Plateau[M].Beijing: Science Press. |