Analysis of Changes in Precipitation Concentration and Seasonal Precipitation Characteristics in the Three River Headwaters Region over the Past 60 Years
Received date: 2023-09-10
Revised date: 2023-12-04
Online published: 2023-12-04
The Three River Headwaters (TRH) region, known as the “Water Tower of China”, is a crucial freshwater source and an ecological barrier in China.Changes in precipitation concentration, seasonal precipitation amount, frequency, and intensity is a key process of water cycle in the context of global warming, holding significant implications for vegetation growth and water resource management in the TRH region.In this study, utilizing the CN05.1 daily precipitation gridded dataset from 1961 to 2020 prepared by the China Meteorological Administration, the Precipitation Concentration Index (PCI) were calculated, and the evolving patterns of precipitation concentration and intra-annual distribution in the TRH region were clarified.The climatology, relative interannual variability, long-term trends, and anomalies of annual and seasonal precipitation amount, frequency, and intensity were investigated.The results find that: (1) Precipitation in the TRH region exhibits a certain degree of concentration with PCI of 17.5.PCI increased from southeast to northwest, suggesting an increased precipitation concentration.Over the past 60 years, PCI has declined at a rate of -1.71% per decade, indicating a trend towards more evenly distributed monthly precipitation throughout the year.It’s noteworthy that the reduction in the proportion of precipitation during the growing season may have ramifications for agricultural production and ecosystem maintenance in the TRH region.(2) Over the past six decades, there has been a significant overall increase in precipitation amount and intensity during different seasons.However, precipitation frequency decreased during summer while increasing in other seasons.Enhanced precipitation intensity has predominantly contributed to the rise in precipitation amount during spring, summer, and autumn, while increased precipitation frequency has played a dominant role in elevating precipitation amount during winter.The increase rate in humidity during winter and spring was higher than that during summer and autumn.In spring, precipitation amount and intensity increased by 8.09% and 6.94% per decade respectively, while winter saw snowfall amount and frequency grow by 7.27% and 4.4% per decade.Also noteworthy is the distribution of droughts and floods in parts of the Yangtze River source area tends towards extreme, exacerbating the ecosystem vulnerability.(3) The regional average precipitation amount, frequency, and intensity in the TRH region have shown an increase of 1.36 mm, 0.024%, and 0.0056 mm·d-1 per year over the past 60 years.The cumulative anomalies of precipitation amount, frequency, and intensity in the last 60 years were negative, with abrupt changes occurring in 2003, 1989, and 2003, respectively.There has been a significant decrease in precipitation frequency during the rainy season, coupled with a substantial increase in precipitation intensity.In contrast, both precipitation frequency and intensity during the dry season have experienced significant increases.These changes have been particularly pronounced in the past decade.This study can serve as a valuable reference for research concerning soil erosion, agricultural production, water resource management, and climate change in the TRH region.
Juan DU , Xiaojing YU , Xiaodong LI , Tianqi AO . Analysis of Changes in Precipitation Concentration and Seasonal Precipitation Characteristics in the Three River Headwaters Region over the Past 60 Years[J]. Plateau Meteorology, 2024 , 43(4) : 826 -840 . DOI: 10.7522/j.issn.1000-0534.2023.00095
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 白晓兰, 魏加华, 解宏伟, 2017.三江源区干湿变化特征及其影响[J].生态学报, 37(24): 8397-8410.DOI: 10.5846/stxb201610102039.Bai X L , |
null | |
null | 毕瑞君, 程志刚, 2022.三江源冬季降雪时空特征及成因分析[J].成都信息工程大学学报, 37(3): 318-324.DOI: 10.16836/j.cnki.jcuit.2022.03.012.Bi R J , |
null | |
null | 蔡永祥, 罗少辉, 王军, 等, 2022.三江源地区1961-2019年降水量时空变化特征[J].草业科学, 39(1): 10-20.DOI: 10.11829/j.issn.1001-0629.2021-0376.Cai Y X , |
null | |
null | 曹晓云, 肖建设, 郝晓华, 等, 2022.2001-2020年三江源地区积雪日数变化及地形分异[J].干旱区地理, 45(5): 1370-1380.DOI: 10.12118/j.issn.1000-6060.2021.59.Cao X Y , |
null | |
null | 陈龙飞, 张万昌, 高会然, 2022.三江源地区1980-2019年积雪时空动态特征及其对气候变化的响应[J].冰川冻土, 44(1): 133-146.DOI: 10.7522/j.issn.1000-0240.2022.0025.Chen L F , |
null | |
null | 段亚雯, 朱克云, 马柱国, 等, 2014.中国区域1961~2010年降水集中指数(PCI)的变化及月分配特征[J].大气科学, 38(6): 1124-1136.DOI: 10.3878/j.issn.1006-9895.1401.13267.Duan Y W , |
null | |
null | 高颖会, 顾斌贤, 柳一玲, 等, 2021.山东省降水集中程度及其与旱涝的关系[J].水电能源科学, 39(1): 18-21. |
null | |
null | 韩会庆, 李建鸿, 白玉梅, 等, 2020.贵州省主要粮食作物不同生长期的降水集中度时空演变[J].节水灌溉(1): 66-72.DOI: 10.3969/j.issn.1007-4929.2020.01.015.Han H Q , |
null | |
null | 靳铮, 游庆龙, 吴芳营, 等, 2020.青藏高原三江源地区近60 a气候与极端气候变化特征分析[J].大气科学学报, 43(6): 1042-1055.DOI: 10.13878/j.cnki.dqkxxb.20201008001.Jin Z , |
null | |
null | 黎晓东, 王永强, 刘万, 等, 2022.三江源典型地区1967-2019年降水时空演变特征[J].长江科学院院报, 39(1): 16-22.DOI: 10.11988/ckyyb.20200971.Li X D , |
null | |
null | 李红梅, 颜亮东, 温婷婷, 等, 2022.三江源地区气候变化特征及其影响评估[J].高原气象, 41(2): 306-316.DOI: 10.7522/j.issn.1000-0534.2021.00101.Li H M , |
null | |
null | 刘晓琼, 吴泽洲, 刘彦随, 等, 2019.1960-2015年青海三江源地区降水时空特征[J].地理学报, 74(9): 1803-1820.DOI: 10.11821/dlxb201909008.Liu X Q , |
null | |
null | 刘义花, 李红梅, 申红艳, 等, 2022.三江源地区降雪量演变特征及其对径流的影响[J].高原气象, 41(2): 420-429.DOI: 10.7522/j.issn.1000-0534.2021.00096.Liu Y H , |
null | |
null | 刘颖, 2019.近45年来三江源区降水量变化趋势及其突变研究[J].西藏科技 (11): 34-41.Liu Y, 2019.Study on the trends and abrupt changes of precipitation in the Three-River Source Region over the past 45 years[J].Tibet's Science & Technology (11): 34-41. |
null | 孟宪红, 陈昊, 李照国, 等, 2020.三江源区气候变化及其环境影响研究综述[J].高原气象, 39(6): 1133-1143.DOI: 10.7522/j.issn.1000-0534.2019.00144.Meng X H , |
null | |
null | 史艳姝, 李军, 谈建国, 等, 2021.上海地区单季晚稻生长期降水量对产量的影响及产量预估[J].气候与环境研究, 26(5): 583-590.DOI: 10.3878/j.issn.1006-9585.2021.21041.Shi Y S , |
null | |
null | 唐红玉, 杨小丹, 王希娟, 等, 2007.三江源地区近50年降水变化分析[J].高原气象, 26(1): 8.Tang H Y, Yang X D, Wang X J, et al, 2007.Analyses of precipitation change in the source regions of Three Rivers during 1956-2004[J].Plateau Meteorology, 26(1): 8. |
null | 王美月, 王磊, 李谢辉, 等, 2022.三江源地区暴雨的水汽输送源地及路径研究[J].高原气象, 41(1): 68-78.DOI: 10.7522/j.issn.1000-0534.2020.00097.Wang M Y , |
null | |
null | 王晓钰, 鲁帆, 朱奎, 等, 2022.不同遥感降水产品多时间尺度的比较研究——以三江源地区为例[J].中国农村水利水电, (7): 132-139.Wang X Y, Lu F, Zhu K, et al, 2022.A comparative study of the multiple time scales of different remote sensing precipitation products: taking the Three-River source region as an example[J].China Rural Water and Hydropower, (7): 132-139. |
null | |
null | |
null | 杨佳星, 樊雨鑫, 2019.52年来三江源区气候变化及其环境效应分析[J].青海环境, 29(4): 169-175.DOI: 10.3969/j.issn.1007-2454.2019.04.006.DOI: 10.3969/j.issn.1007-2454.2019.04.006.Yang J X , |
null | |
null | 杨显玉, 吕雅琼, 文军, 等, 2022.三江源区域夏季降水异常的水汽输送及源地特征的研究[J].高原气象, 41(2): 465-476.DOI: 10.7522/j.issn.1000-0534.2022.00015.Yang X Y , |
null | |
null | 姚秀萍, 谢启玉, 黄逸飞, 2022.中国三江源地区降水研究的进展与展望[J].大气科学学报, 45(5): 688-699.DOI: 10.13878/j.cnki.dqkxxb.20211220001.Yao X P , |
null | |
null | 张青, 陈丹, 唐忠涛, 等, 2022.1961~2020年三江源地区候降水变化特征分析[J].青海草业, 31(1): 46-52.DOI: 10.3969/j.issn.1008-1445.2022.01.011.Zhang Q , |
null | |
null | 张岩, 张建军, 张艳得, 等, 2017.三江源区径流长期变化趋势对降水响应的空间差异[J].环境科学研究, 30(1): 40-50.DOI: 10.13198/j.issn.1001-6929.2017.01.08.Zhang Y , |
null | |
null | 张宇, 李铁键, 李家叶, 等, 2019.西风带和南亚季风对三江源雨季水汽输送及降水的影响[J].水科学进展, 30(3): 348-358.DOI: 10.14042/j.cnki.32.1309.2019.03.005.Zhang Y , |
null | |
null | 赵志平, 关潇, 李果, 等, 2017.近45 年来青海三江源区干湿变化的趋势分析[J].干旱区资源与环境, 31(4): 148-153.DOI: 10.13448/j.cnki.jalre.2017.125.Zhao Z P , |
null | |
null | 周斌, 刘佳, 秦宁生, 等, 2021.1961-2019年大渡河流域降水集中度、 集中期特征及径流响应研究[J].气象与环境科学, 44(1): 56-64.DOI: 10.16765/j.cnki.1673-7148.2021.01.007.Zhou B , |
null |
/
〈 |
|
〉 |