Spectral Observation of Solar Photosynthetically Active Radiation on Clear Days in Qinghai-Xizang Plateau

  • Min SHENG ,
  • Tsoja WANGMO ,
  • Mengmeng WANG ,
  • Yi ZHOU ,
  • Dopwang PU ,
  • Tunzhup LAGBA ,
  • Gelsor NORSANG
Expand
  • Solar ultraviolet Laboratory,Tibet University,Lhasa 850000,Xizang,China

Received date: 2023-12-06

  Revised date: 2024-04-19

  Online published: 2024-04-19

Abstract

Photosynthetically Active Radiation (PAR) spectrum, in visible light, is the wavelength range sensitive to plants and can be absorbed by them for photosynthesis.The characteristics of ground PAR spectrum directly affect the growth, development, morphology, physiological metabolism, yield, and adaptability of plants.In order to further understand the distribution characteristics of PAR in high-altitude areas of Xizang, this study utilized the International High-Precision Solar Spectroradiometer to conduct field observations of the PAR spectrum characteristics in the Mt.Everest, Shigatse, Lhasa, and Nyingchi regions of the Qinghai-Xizang Plateau from 2021 to 2022.The observations found that during the winter and summer solstices on the Qinghai-Xizang Plateau, the variation in PAR was significant.The peak monochromatic radiation illuminance of PAR at Mt.Everest during the summer solstice [1251 mW·(m2·nm)-1] to the winter solstice [1935 mW·(m2·nm)-1] fluctuated by up to 684 mW·(m2·nm)-1.The winter solstice integrated value of PAR spectrum at Mt.Everest (309.86 W·m-2) was 41.61% lower than the AM0 standard spectrum integrated value of PAR (530.67 W·m-2), and 28% lower than the AM1.5 standard spectrum integrated value of PAR (429.83 W·m-2).During the summer solstice, the PAR spectra at Mt.Everest, Shigatse, and Lhasa in Xizang all exceeded the AM1.5 standard spectrum at noon and were close to the AM0 standard spectrum.In Shigatse, Xizang, during the spring equinox and autumn equinox, the peak PAR spectra were 1699 mW·(m2·nm)-1 and 1696 mW·(m2·nm)-1 respectively, with peak values being nearly identical.This similarity is due to the same local solar altitude angle at noon (e.g., 59.84 radians in Shigatse) during the equinoxes at the same observation point on the Tibetan Plateau, assuming other factors affecting the spectrum are the same.Comparison of observations between the Qinghai-Xizang Plateau and low-altitude areas such as Beijing, Anhui's Lu'an, and Henan's Puyang revealed that on a clear day near the winter solstice (November 20, 2021), the integrated value of PAR spectrum at high-altitude Mt.Everest (309.86 W·m-2 was 17.19% higher than that in low-altitude Lu'an, Anhui (264.41 W·m-2); on a clear day near the summer solstice (June 3, 2021), the integrated value of PAR spectrum at high-altitude Mt.Everest (487.41 W·m-2) was 23.66% higher than that in low-altitude Beijing (394.15 W·m-2); near the autumn equinox (September 19, 2021), the integrated value of PAR spectrum in low-altitude Beijing (315.23 W·m-2) was only 71.24% of that at high-altitude Mt.Everest (442.49 W·m-2); near the spring equinox (March 19, 2021), the integrated value of PAR spectrum in high-altitude Shigatse (413.34 W·m-2) was 64.75% higher than that in low-altitude Puyang, Henan (261.82 W·m-2).The results indicate that the integrated value of PAR spectrum is positively correlated with altitude, with higher altitudes corresponding to larger integrated values.Additionally, through observations of PAR spectra on clear days throughout the year, it was found that there are certain temporal variations in spectral radiation illuminance.Specifically, the spectral radiation illuminance is lowest at the winter solstice, then increases daily until reaching its peak the following year after the spring equinox, decreases daily after the summer solstice, reaches its lowest point again at the winter solstice after the autumn equinox, with the spectral radiation illuminance characteristics being basically the same during the spring equinox and autumn equinox.

Cite this article

Min SHENG , Tsoja WANGMO , Mengmeng WANG , Yi ZHOU , Dopwang PU , Tunzhup LAGBA , Gelsor NORSANG . Spectral Observation of Solar Photosynthetically Active Radiation on Clear Days in Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2025 , 44(1) : 46 -55 . DOI: 10.7522/j.issn.1000-0534.2024.00062

References

null
Bercel T L Kranz S A2022.Effects of spectral light quality on the growth, productivity, and elemental ratios in differently pigmented marine phytoplankton species[J].Journal of Applied Phycology34(1): 185-202.DOI: 10.1007/S10811-021-02653-3 .
null
Di Q Li J Du Y, et al, 2021.Combination of red and blue lights improved the growth and development of eggplant (Solanum melongena L.) seedlings by regulating photosynthesis[J].Journal of Plant Growth Regulation40(4): 1477-1492.DOI: 10.1007/s00344-020-10211-3 .
null
Dickinson K E Lalonde C G McGinn P J2019.Effects of spectral light quality and carbon dioxide on the physiology of Micractinium inermum: growth, photosynthesis, and biochemical composition[J].Journal of Applied Phycology31(6): 3385-3396.
null
D'Onofrio C Morini S Bellocchi G1998.Effect of light quality on somatic embryogenesis of quince leaves[J].Plant Cell Tissue & Organ Culture, 53: 91-98.DOI: 10.1023/A: 1006059615088 .
null
Elmardy N A Yousef A Lin K, et al, 2021.Photosynthetic performance of rocket (Eruca sativa.Mill.) grown under different regimes of light intensity, quality, nd photoperiod[J].PLoS One16(9): e0257745.DOI: 10.1371/journal.pone.0257745 .
null
Esmaeilizadeh M Malekzadeh S M R Roosta H R, et al, 2021.Manipulation of light spectrum can improve the performance of photosynthetic apparatus of strawberry plants growing under salt and alkalinity stress[J].PloS One16(12): e0261585.DOI: 10.1371/journal.pone.0261585 .
null
Gao W He D Ji F, et al, 2020.Effects of daily light integral and LED spectrum on growth and nutritional quality of hydroponic spinach[J].Agronomy10(8): 1082.DOI: 10.3390/agronomy10081082 .
null
Kambezidis H D2021.The solar radiation climate of greece[J].Climate9(12): 183.
null
Lim S Kim J2021.Light quality affects water use of sweet basil by changing its stomatal development[J].Agronomy11(2): 303.DOI: 10.3390/AGRONOMY11020303 .
null
Lukes M Giordano M Prasil O2019.The effect of light quality and quantity on carbon allocation in Chromera velia[J].Folia Microbiologica64(5): 655-662.
null
Moazzeni M Reezi S Ghehsareh M G2020.Growth and chlorophyll fluorescence characteri‐stics of Sinningia speciosa under red, blue and white light‐emitting diodes and sunlight[J].Advances in Horticultural Science34(4): 419-430.
null
Modarelli G C Arena C Pesce G, et al, 2020.The role of light quality of photoperiodic lighting on photosynthesis, flowering and metabolic profiling in Ranunculus asiaticus L[J].Physiologia Plantarum170(2): 187-201.DOI: 10.1111/ppl.13122 .
null
Norsang G Chen Y C Pingcuo N, et al, 2014.Comparison of ground-based measurements of solar UV radiation at four sites on the Tibetan Plateau[J].Applied Optics53(4): 736-747.
null
Oguchi R Terashima I Chow W S2021.The effect of different spectral light quality on the photoinhibition of Photosystem I in intact leaves[J].Photosynthesis Research149(1): 83-92.DOI: 10.1007/s11120-020-00805-z .
null
Oka K Ueno Y Yokono M, et al, 2020.Adaptation of light-harvesting and energy-transfer processes of a diatom Phaeodactylum tricornutum to different light qualities[J].Photosynthesis Research146(1): 227-234.DOI: 10.1007/s11120-020-00714-1 .
null
Parys E Krupnik T Kuak I, et al, 2021.Photosynthesis of the cyanidioschyzon merolae cells in blue, red, and white light[J] Photosynthesis Research, 2021, 147(1): 61-73.DOI: 10.1007/s11120-020-00796-x .
null
Pashkovskiy P P Soshinkova T N Korolkova D V, et al, 2018.The effect of light quality on the pro-/antioxidant balance, activity of photosystem II, and expression of light-dependent genes in Eutrema salsugineum callus cells[J].Photosynthesis Research an International Journal, 136: 199-214.
null
Ramalho J C Marques N C Emedo J N, et al, 2002.Photosynthetic performance and pigment composition of leaves from two tropical species is determined by light quality[J].Plant Biology4(1): 112-120.
null
Thuillier G Hersé M Foujols T, et al, 2003.The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions[J].Solar Physics214(1): 1-22.
null
Xu Y Yang M Cheng F, et al, 2020.Effects of LED photoperiods and light qualities on in vitro growth and chlorophyll fluorescence of Cunninghamia lanceolata[J].BioMed Central Plant Biology, 20: 1-12.DOI: 10.1186/s12870-020-02480-7 .
null
Zhang W Zhu C Chen S2020.Effects of light quality and photoperiod on growth and photosynthetic pigment content of a Rhodophyta, Gloiopeltis furcata[J].Fisheries Science, 86: 367-373.DOI: 10.1007/s12562-020-01400-w .
null
Zhang X He D Niu G, et al, 2018.Effects of environment lighting on the growth, photosynthesis, and quality of hydroponic lettuce in a plant factory[J].International Journal of Agricultural and Biological Engineering11(2): 33-40.
null
Zheng L He H Song W2019.Application of light-emitting diodes and the effect of light quality on horticultural crops: a review[J].HortScience54(10): 1656-1661.DOI: 10.21273/hortsci14109-19 .
null
白建辉, 2010.光合有效辐射在大气中的衰减[J].环境科学学报30(2), 302-313.
null
Bai J H2010.The attenuation of photosynthetically active radiation in the atmosphere over Northern China[J].Acta Scientiae Circumstantiae30(2), 302-313.
null
郭仕侗, 韦志刚, 王欢, 2023.珠海凤凰山常绿阔叶林CO2通量与 光合有效辐射及气象因子的关系[J].高原气象42(3): 795-808.DOI: 10.7522/j.issn.1000-0534.2022.00051.Guo S T
null
Wei Z G Wang H2023.Relationship between CO2 flux, photosynthetically active radiation and meteorological factors in evergreen broad-leaved forest in the Phoenix Mountain Area of Zhuhai[J].Plateau Meteorology42(3): 795-808.DOI: 10.7522/j.issn.1000-0534.2022.00051 .
null
黄芳芳, 马伟强, 王遂缠, 等, 2024.基于CE-318观测的甘肃省气溶胶光学特性分析[J].高原气象43(1): 241-253.DOI: 10.7522/j.issn.1000-0534.2023.00030.Huang F F
null
Ma W Q Wang S C, et al, 2024.Optical characterization of aerosols in Gansu Province based on CE-318 observations[J].Plateau Meteorology43(1): 241-253.DOI: 10.7522/j.issn.1000-0534.2023.00030 .
null
江灏, 1993.HEIFE绿洲区太阳总辐射和地表反射率的分光谱特征[J].高原气象12(2): 156-161.
null
Jiang H1993.The spectrum characteristics of global radiation and surface albedo over pasis region in Heife[J].Plateau Meteorology12(2): 156-161.
null
李韧, 季国良, 杨文, 等, 2007.青藏高原北部光合有效辐射的观测研究[J].太阳能学报28(3): 241-247.DOI: 10.3321/j.issn: 0254-0096.2007.03.003.Ji R
null
Ji G L Yang W, et al, 2007.The observation study on par coefficient over northern part of Tibetan Planteau[J].Acta Energiae Solaris Sinica28(3): 241-247.DOI: 10.3321/j.issn: 0254-0096.2007.03.003 .
null
刘淳, 任立清, 李学军, 等, 2021.1990 -2019年中国北方沙区太阳能资源评估[J].高原气象40(5): 1213-1223.DOI: 10.7522/j.issn.1000-0534.2021.00058.Liu C
null
Ren L Q Li X J, et al.2021.Evaluation to the solar energy resources in the sandy regions of Northern China from 1990 to 2019[J].Plateau Meteorology40(5): 1213-1223.DOI: 10.7522/j.issn.1000-0534.2021.00058 .
null
刘娟, 措加旺姆, 诺桑, 等, 2020.西藏晴天太阳红斑紫外线观测研究[J].光学学报40(19): 27-35.
null
Liu J Wangmo Tsoja Gelsor Norsang, et al, 2020.Observation of solar erythemal ultraviolet radiation on clear days in Tibet[J].Acta Optica Sinica40(19): 27-35.
null
牛瑞佳, 文莉娟, 王梦晓, 等, 2023.积雪和沙尘对冰封期青海湖辐射和温度的影响[J].高原气象42(4): 913-922.DOI: 10.7522/j.issn.1000-0534.2023.00021.Niu R J
null
Wen L J Wang M X, et al, 2023.Effects of snow and dust on radiation and temperature in Qinghai Lake during ice-overed period[J].Plateau Meteorology42(4): 913-922.DOI: 10.7522/j.issn.1000-0534.2023.00021 .
null
普多旺, 拉瓜登顿, 盛敏, 等, 2023.中国北纬30°地面太阳光谱观测[J].光谱学与光谱分析43(6): 1881-1887.
null
Pu D W Lagba T Sheng M, et al, 2023.Surface solar spectral observation along 30°N in China[J].Spectroscopy and Spectral Analysis43(6): 1881-1887.
null
王倩, 拉瓜登顿, 普多旺, 等, 2022.拉萨和北京太阳光谱观测研究[J].科技传播14(9): 146-149.DOI: 10.16607/j.cnki.1674-6708.2022.09.044.Wang Q
null
Lagba T Z Pu D W, et al, 2022.The solar spectral observation in Lhasa and Beijing[J].Public Communication of Science & Technology14(9): 146-149.DOI: 10.16607/j.cnki.1674-6708.2022.09.044 .
null
王树舟, 马耀明, 吴文玉, 2023.基于Noah-MP陆面模式的青藏高原地表感热和潜热通量分布及变化特征[J].高原气象42(1): 25-34.DOI: 10.7522/j.issn.1000-0534.2022.00036.Wang S Z
null
Ma Y M Wu W Y2023.Characteristics of distributions and changes of surface sensible and latent heat fluxes on the Qinghai-Xizang Plateau based on the Noah-MP Land Surface Model[J].Plateau Meteorology42(1): 25-34.DOI: 10.7522/j.issn.1000-0534.2022.00036 .
null
余晓雨, 贾绍凤, 朱文彬, 2022.青海省地表净辐射通量的遥感估算方法及时空特征分析[J].高原气象41(4): 921-933.DOI: 10.7522/j.issn.1000-0534.2021.00033.Yu X Y
null
Jia S F Zhu W B2022.Estimation of land surface net radiation flux based on remote sensing and analysis of its spatial-temporal characteristics in Qinghai Province[J].Plateau Meteorology41(4): 921-933.DOI: 10.7522/j.issn.1000-0534.2021.00033 .
null
张强, 文军, 武月月, 等, 2022.雅鲁藏布大峡谷地区近地面-大气间水热交换特征分析[J].高原气象41(1): 153-166.DOI: 10.7522/j.issn.1000-0534.2021.00113.Zhang Q
null
Wen W Wu Y Y, et al, 2022.Characteristics analysis of the land-atmospheric water & heat Exchanges over the Yarlung Zangbo Grand Canyon Region[J].Plateau Meteorology41(1): 153-166.DOI: 10.7522/j.issn.1000-0534.2021.00113 .
null
赵地, 诺桑, 措加旺姆, 等, 2018.西藏拉萨地区太阳紫外辐射观测[J].大气与环境光学学报13(2): 81-87.
null
Zhao D Gelsor Norsang Wangmo Tsoja, et al, 2018.Measurements of solar UV radiation in Lhasa, Tibet[J].Journal of Atmospheric and Environmental Optics13(2): 81-87.
null
周成波, 张旭, 崔青青, 等, 2017.LED补光光质对小白菜生长及光合作用的影响[J].植物生理学报53(6): 1030-1038.
null
Zhou C B Zhang X Cui Q Q, et al, 2017.Effects of supplementary light quality on growth and photosynthesis of pakchoi (Brassica campestris) [J].Plant Physiology Journal53(6): 1030-1038.
null
周毅, 诺桑, 王倩, 等, 2021.西藏阿里地表面太阳光谱观测[J].地球环境学报12(5): 549-557.
null
Zhou Y Norsang G Wang Q, et al, 2021.Ground-based measurements of solar spectrum in Ngari[J].Journal of Earth Environment12(5): 549-557.
Outlines

/