An Integrated Remote Sensing Drought Monitoring Model Based on Multi-source Information

  • Dejun ZHANG ,
  • Guan HONG ,
  • Shiqi YANG ,
  • Hao ZHU
Expand
  • 1. China Meteorological Administration Economic Transformation of Climate Resources Key Laboratory,Chongqing Institute of Meteorological Sciences,Chongqing 401147,China
    2. Chongqing Engineering Research Center of Agrometeorology and Satellite Remote Sensing,Chongqing 401147,China
    3. Meteorological Observation Center of CMA,Beijing 100081,China

Received date: 2023-09-08

  Revised date: 2024-03-01

  Online published: 2024-03-01

Abstract

In order to solve the problem of the traditional remote sensing drought index focuses on the monitoring of a single response factor and lacks a complete analysis of drought.In this paper, we selected TVDI, RVI, PDI, and GVMI daily products estimated from remote sensing data as independent variables, and MCI calculated from meteorological data at the adjacent moments of satellite transit as dependent variables, and uses the Random Forest Regression (RFR) model to construct a integrated remote sensing drought monitoring model.The results show that the accuracy of RFR model is better than that of the Ordinary Least Squares (OLS) model in bothtraining data and test data.The R value of the RFR training data is 0.97, the RMSE is 0.33, the R value of the RFR test data is 0.90, and the RMSE is 0.53.The R value of the OLS training data is 0.78, the RMSE value is 0.73, the R value of the OLS test data is 0.76, and the RMSE value is 0.79.The comparisons of RFR and OLS model in R and RMSE show that the RFR model is superior than the OLS model in the characterization of regional drought.In the application of drought monitoring in Southwest China in 2022, the RFR results are consistent with the spatiotemporal distribution of the MCI index, which can better characterize the spatial and temporal dynamics of the regional drought, reflecting the practicality of the RFR model in the actual drought monitoring process.However, the accuracy of RFR model is related to the number of regional stations and the spatial distribution of stations, and the accuracy of the RFR model is higher in areas with a large number of stations and uniform distribution of stations.

Cite this article

Dejun ZHANG , Guan HONG , Shiqi YANG , Hao ZHU . An Integrated Remote Sensing Drought Monitoring Model Based on Multi-source Information[J]. Plateau Meteorology, 2024 , 43(6) : 1507 -1519 . DOI: 10.7522/j.issn.1000-0534.2024.00025

References

null
Breiman L2001.Random forest[M].Machine Learning45(1): 5-32.
null
GB/T 20481-2017.气象干旱等级 [S].北京, 中国标准出版社, 2018.
null
GB/T 20481-2017.Grades of meteorological drought [S].Beijing, Standards Press of China, 2018.
null
Hao C Zhang J H Yao F M2015.Combination of multi-sensor remote sensing data for drought monitoring over Southwest China[J].International Journal of Applied Earth Observation and Geoinformation, 35: 270-283.DOI: 10.1016/j.jag.2014.09.011 .
null
Rhee J Im J Carbone G2010.Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data[J].Remote Sensing of Environment, 114: 2875-2887.DOI: 10.1016/j.rse.2010.07.005 .
null
Sheffield J Wood E F Chaney N, et al, 2014.A drought monitoring and forecasting system for sub-Sahara African water resources and food security[J].Bulletin of the American Meteorological Society, 95: 861-882.DOI: 10.1175/BAMS-D-12-00124.1 .
null
Wan Z M2014.New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product[J].Remote Sensing of Environment, 140: 36-45.DOI: 10.1016/j.rse. 2013.08.027 .
null
Yan H Zarekarizi M Moradkhani H2018.Toward improving drought monitoring using the remotely sensed soil moisture assimilation: A parallel particle filtering framework[J].Remote Sensing of Environment, 216: 456-471.DOI: 10.1016/j.rse.2018. 07.017 .
null
Zhu W Jia S Lv A2017.A time domain solution of the Modified Temperature Vegetation Dryness Index (MTVDI) for continuous soil moisture monitoring[J].Remote Sensing of Environment, 200: 1-17.DOI: 10.1016/j.rse.2017.07.032 .
null
陈国茜, 周秉荣, 胡爱军, 2014.垂直干旱指数在高寒农区春旱监测中的应用研究[J].遥感技术和与应用29(6): 949-953.DOI: 10.11873/j.issn.1004-0323.2014.6.0949.Chen G X
null
Zhou B R Hu A J2014.Application research of perpendicular drought Index for spring drought monitoring in high and cold agricultural area[J].Remote Sensing Technology and Application29(6): 949-953.DOI: 10.11873/j.issn.1004-0323.2014.6.0949 .
null
董婷, 孟令奎, 张文, 2015.MODIS短波红外水分胁迫指数及其在农业干旱监测中的适用性分析[J].遥感学报19(2): 319-327.DOI: 10.11834/jrs.20153355.Dong T
null
Meng L K Zhang W2015.Analysis of the application of MODIS shortwave infrared water stress index in monitoring agricultural drought[J].Journal of Remote Sensing19(2): 319-327.DOI: 10.11834/jrs.20153355 .
null
杜灵通, 田庆久, 王磊, 等, 2014.基于多源遥感数据的综合干旱监测模型构建[J].农业工程学报30(9): 126-132.DOI: 10.3969/j.issn.1002-6819.2014.09.016.Du L T
null
Tian Q J Wang L, et al, 2014.A synthesized drought monitoring model based on multi-source remote sensing data[J].Transactions of the Chinese Society of Agricultural Engineering30(9): 126-132.DOI: 10.3969/j.issn.1002-6819.2014.09.016 .
null
郭浩, 古丽·加帕尔, 包安明, 等, 2017.基于改进型垂直干旱指数的塔里木河流域绿洲与荒漠区干旱时空变化对比[J].中国沙漠37(4): 775-783.DOI: 10.7522/j.issn.1000-694X.2016.00057.Guo H
null
Guli J Bao A M, et al, 2017.MPDI-based comparison on spatiotemporal variation of drought over oasis and desert in Tarim Basin[J].Journal of Desert Research37(4): 775-783.DOI: 10.7522/j.issn.1000-694X.2016.00057 .
null
黄友昕, 刘修国, 沈永林, 等, 2015.农业干旱遥感监测指标及其适应性评价方法研究进展[J].农业工程学报31(16): 186-195.DOI: 10.11975/j.issn.1002-6819.2015.16.025.Huang Y X
null
Liu X G Shen Y L, et al, 2015.Advances in remote sensing derived agricultural drought monitoring indices and adaptability evaluation methods[J].Transactions of the Chinese Society of Agricultural Engineering31(16): 186-195.DOI: 10.11975/j.issn.1002-6819.2015.16.025 .
null
贾何佳, 李谢辉, 王磊, 等, 2022.基于机器学习的西南地区遥感干旱监测与评估[J].高原气象41(6): 1572-1582.DOI: 10.7522/j.issn.1000-0534.2022.00006.Jia H J
null
Li X H Wang L, et al, 2022.Remote sensing drought monitoring and assessment in Southwestern China based on machine learning[J].Plateau Meteorology41(6): 1572-1582.DOI: 10.7522/j.issn.1000-0534.2022.00006 .
null
江笑薇, 白建军, 刘宪锋, 2019.基于多源信息的综合干旱监测研究进展与展望[J].地球科学进展34(3): 275-287.DOI: 10.11867/j.issn.1001-8166.2019.03.0275.Jiang X W
null
Bai J J Liu X F2019.Research progress and prospect of integrated drought monitoring based on multi-source information[J].Advances in Earth Science34(3): 275-287.DOI: 10.11867/j.issn.1001-8166.2019.03.0275 .
null
李梦云, 黄方, 2016.基于SPOT-VGT可见光/短波红外波段数据对AMSR-E土壤湿度的降尺度研究[J].遥感技术与应用31(2): 342-348.
null
Li M Y Huang F2016.Down-scaling AMSR-E derived soil moisture using SPOT-VGT visible/shortwave infrared data[J].Remote Sensing Technology and Application31(2): 342-348.
null
刘二华, 周广胜, 周莉, 等, 2020.夏玉米不同生育期叶片和冠层含水量的遥感反演[J].应用气象学报31(1): 52-62.DOI: 10.11898/1001-7313.202001005.Liu E H
null
Zhou G S Zhou L, et al, 2020.Remote sensing inversion of leaf and canopy water content in different growth stages of summer maize[J].Journal of Applied Meteorological Science31(1): 52-62.DOI: 10.11898/1001-7313.202001005 .
null
刘元亮, 李艳, 吴剑亮, 2015.基于LSWI和NDVI时间序列的水田信息提取研究[J].地理与地理信息科学31(3): 32-37.DOI: 10.3969/j.issn.1672-0504.2015.03.007.Li Y L
null
Li Y Wu J L2015.Study on extraction of paddy fields based on LSWI and time-series NDVI[J].Geography and Geo-Information Science31(3): 32-37.DOI: 10.3969/j.issn.1672-0504.2015.03.007 .
null
米前川, 高西宁, 李玥, 等, 2022.深度学习方法在干旱预测中的应用[J].应用气象学报33(1): 104-114.DOI: 10.11898/1001-7313.20220109.Mi Q C
null
Gao X N Li Y, et al, 2022.Application of deep learning method to drought prediction[J].Journal of Applied Meteorological Science33(1): 104-114.DOI: 10.11898/1001-7313.20220109 .
null
沈润平, 郭佳, 张婧娴, 等, 2016.基于随机森林的遥感干旱监测模型的构建[J].地球信息科学学报19(1): 125-133.DOI: 10.3724/SP.J.1047.2017.00125.Shen R P
null
Guo J Zhang J X, et al, 2016.Construction of a drought monitoring model using the random forest based remote sensing[J].Journal of Geo-information Science19(1): 125-133.DOI: 10.3724/SP.J.1047.2017.00125 .
null
宋艳玲, 王建林, 田靳峰, 等, 2019.气象干旱指数在东北春玉米干旱监测中的改进[J].应用气象学报30(1): 25-34.DOI: 10.11898/1001-7313.20190103.Song Y L
null
Wang J L Tian J F, et al, 2019.The spring maize drought index in northeast China based on meteorological drought index[J].Journal of Applied Meteorological Science30(1): 25-34.DOI: 10.11898/1001-7313.20190103 .
null
宋扬, 房世波, 梁瀚月, 等, 2017.基于MODIS数据的农业干旱遥感指数对比和应用[J].国土资源遥感29(2): 215-220.DOI: 10.6046/gtzyyg.2017.02.31.Song Y
null
Fang S B Liang H Y, et al, 2017.Comparison and application of agricultural drought indexes based on MODIS data[J].Remote Sensing for Land and Resources29(2): 215-220.DOI: 10.6046/gtzyyg.2017.02.31 .
null
孙灏, 陈云浩, 孙洪泉, 2012.典型农业干旱遥感监测指数的比较及分类体系[J].农业工程学报28(14): 147-154.DOI: 10.3969/j.issn.1002-6819.2012.14.023.Sun H
null
Chen Y H Sun H Q2012.Comparisons and classification system of typical remote sensing indexes for agricultural drought[J].Transactions of the Chinese Society of Agricultural Engineering28(14): 147-154.DOI: 10.3969/j.issn.1002-6819.2012.14.023 .
null
孙兴亮, 郝晓华, 王建, 等, 2022.基于光谱-环境随机森林回归模型的MODIS积雪面积比例反演研究[J].冰川冻土44(1): 147-158.DOI: 10.7522/j.issn.1000-0240.2022.0026.Sun X L
null
Hao X H Wang J, et al, 2022.Research on retrieval of MODIS fraction snow cover based on spectral environmental random forest regression model[J].Journal of Glaciology and Geocryology44(1): 147-158.DOI: 10.7522/j.issn.1000-0240.2022.0026 .
null
孙昭萱, 张强, 孙蕊, 等, 2022.2022年西南地区极端高温干旱特征及其主要影响[J].干旱气象40(5): 764-770.DOI: 10.11755/j.issn.1006-7639(2022)-05-0764.Sun Z X
null
Zhang Q Sun R, et al, 2022.Characteristics of the extreme high temperature and drought and their main impacts in southwestern China of 2022[J].Journal of Arid Meteorology40(5): 764-770.DOI: 10.11755/j.issn.1006-7639(2022)-05-0764 .
null
王瑾, 陈书涛, 丁司丞, 等, 2022.大豆叶片呼吸与植被指数和叶片性状的关系[J].光谱学与光谱分析42(5): 1607-1613.DOI: 10.3964/j.issn.1000-0593(2022)05-1607-07.Wang J
null
Chen S T Ding S C, et al, 2022.Relationships between the leaf respiration of soybean and vegetation indexes and leaf characteristics[J].Spectroscopy and Spectral Analysis42(5): 1607-1613.DOI: 10.3964/j.issn.1000-0593(2022)05-1607-07 .
null
王蕾, 王鹏新, 李俐, 等, 2018.应用条件植被温度指数预测县域尺度小麦单产[J].武汉大学学报(信息科学版)43(10): 1566-1573.DOI: 10.13203/j.whugis20160391.Wang L
null
Wang P X Li L, et al, 2018.Wheat yield forecasting at county scale based on time series vegetation temperature condition index[J].Geomatics and Information Science of Wuhan University43(10): 1566-1573.DOI: 10.13203/j.whugis20160391 .
null
王溥, 武建军, 聂建亮, 等, 2010.不同植被水分指数对小麦水分状况监测效果对比[J].国土资源遥感85(3): 97-100.DOI: 10.6046/gtzyyg.2010.03.20.Wang P
null
Wu J J Nie J L, et al, 2010.A comparatively study of the capabilities of different vegetation water indices in monitoring water status of wheat[J].Remote Sensing for Land and Resources85(3): 97-100.DOI: 10.6046/gtzyyg.2010.03.20 .
null
王天, 涂新军, 周宗林, 等, 2022.基于CMIP6的珠江流域未来干旱时空变化[J].农业工程学报38(11): 81-90.DOI: 10.11975/j.issn.1002-6819.2022.11.009.Wang T
null
Tu X J Zhou Z L, et al, 2022.Spatiotemporal variation of future droughts in the Pearl River Basin using CMIP6[J].Transactions of the Chinese Society of Agricultural Engineering38(11): 81-90.DOI: 10.11975/j.issn.1002-6819.2022.11.009 .
null
王兴, 陈鲜艳, 张强, 等, 2023.利用短序列区域站资料计算干旱指数SPI的应用研究[J].高原气象42(5): 1325-1337.DOI: 10.7522/j.issn.1000-0534.2022.00082.Wang X
null
Chen X Y Zhang Q, et al, 2023.Study of using short sequence data of regional station to calculate drought index SPI[J].Plateau Meteorology42(5): 1325-1337.DOI: 10.7522/j.issn.1000-0534.2022.00082 .
null
温庆志, 孙鹏, 张强, 等, 2019.基于多源遥感数据的农业干旱监测模型构建及应用[J].生态学报39(20): 7757-7770.DOI: 10.5846/stxb201711202068.Wen Q Z
null
Sun P Zhang Q, et al, 2019.An integrated agricultural drought monitoring model based on multi-source remote sensing data: model development and application[J].Acta Ecologica Sinica39(20): 7757-7770.DOI: 10.5846/stxb201711202068 .
null
吴天晓, 李宝富, 郭浩, 等, 2023.基于优选遥感干旱指数的华北平原干旱时空变化特征分析[J].生态学报43(4): 1621-1634.DOI: 10.5846/stxb202110122864.Wu T X
null
Li B F Guo H, et al, 2023.Analysis of drought variation characteristics in North China Plain based on optimized remote sensing drought index[J].Acta Ecologica Sinica43(4): 1621-1634.DOI: 10.5846/stxb202110122864 .
null
谢五三, 张强, 李威, 等, 2021.干旱指数在中国东北、 西南和长江中下游地区适用性分析[J].高原气象40(5): 1136-1146.DOI: 10.7522/j.issn.1000-0534.2020.00102.Xie W S
null
Zhang Q Li W, et al, 2021.Analysis of the applicability of drought indexes in the northeast, southwest and middle-lower reaches of Yangtze River of China[J].Plateau Meteorology40(5): 1136-1146.DOI: 10.7522/j.issn.1000-0534.2020.00102 .
null
杨歆雨, 张容焱, 潘航, 等, 2022.福建省多维度气象干旱特征时空分布分析[J].气象48(12): 1565-1576.DOI: 10.7519/j.issn.1000-0526.2022.072101.Yang X Y
null
Zhang R Y Pan H, et al, 2022.Spatio-Temporal distribution analysis of multi-dimensional meteorological drought characteristics in Fujian Province[J].Meteorological Monthly48(12): 1565-1576.DOI: 10.7519/j.issn.1000-0526.2022.072101 .
null
尹国应, 张洪艳, 张良培, 2022.2001-2019年长江中下游农业干旱遥感监测及植被敏感性分析[J].武汉大学学报(信息科学版)47(8): 1245-1256.DOI: 10.13203/j.whugis20210172.Yin G Y
null
Zhang H Y Zhang L P2022.Remote sensing monitoring of agricultural drought and vegetation sensitivity analysis in the middle and lower reaches of the Yangtze River from 2001 to 2019[J].Geomatics and Information Science of Wuhan University47(8): 1245-1256.DOI: 10.13203/j.whugis20210172 .
null
玉院和, 王金亮, 李晓鹏, 2018.基于MODIS数据的滇中地区干旱监测[J].灌溉排水学报37(11): 91-98.DOI: 10.13522/j.cnki.ggps.20180097.Yu Y H
null
Wang J L Li X P2018.Monitoring the occurrence of drought in central Yunnan province based on MODIS data[J].Journal of Irrigation and Drainage37(11): 91-98.DOI: 10.13522/j.cnki.ggps.20180097 .
null
张瑾, 王斌, 白建军, 2022.基于植被状态指数的甘肃省2000-2019年干旱时空特征分析[J].水土保持研究29(6): 167-173.DOI: 10.13869/j.cnki.rswc.2022.06.007.Zhang J
null
Wang B Bai J J2022.Analysis of the spatial and temporal characteristics of drought in Gansu province from 2000 to 2019 based on the vegetation state index[J].Research of Soil and Water Conservation29(6): 167-173.DOI: 10.13869/j.cnki.rswc.2022.06.007 .
null
张强, 邹旭恺, 陈鲜艳, 等, 2022.考虑多尺度和蒸散影响的新干旱指数研究—以云南为例[J].高原气象41(4): 909-920.DOI: 10.7522/j.issn.1000-0534.2021.00026.Zhang Q
null
Zou X K Chen X Y, et al, 2022.A new drought index study that takes into account a multi-timescale and the effects of evapotranspiration——Taking Yunnan as an example[J].Plateau Meteorology41(4): 909-920.DOI: 10.7522/j.issn.1000-0534.2021.00026 .
null
朱高龙, 柳艺博, 居为民, 等, 2013.4种常用植被指数的地形效应评估[J].遥感学报17(1): 210-234.DOI: 10.11834/jrs.20131380.Zhu G L
null
Liu Y B Ju W M, et al, 2013.Evaluation of topographic effects on four commonly used vegetation indices[J].Journal of Remote Sensing17(1): 210-234.DOI: 10.11834/jrs.20131380 .
null
朱琳, 秦其明, 王金梁, 等, 2011.短波红外垂直失水指数观测误差估计方法及其同化方案[J].红外与毫米波学报30(6): 526-536.
null
Zhu L Qin Q M Wang J L, et al, 2011.Estimates of observation error based on shortwave infrared perpendicular water stress index for regional assimilation[J].Journal of Infrared and Millimeter Waves30(6): 526-536.
Outlines

/