Fine-scale Simulation Study of Climate Characteristics along the Qinghai-Xizang Railway

  • Fuquan LU ,
  • Yaoxian YANG ,
  • Zeyong HU
Expand
  • 1. Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions,Northwest Institute; of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,Gansu,China
    2. Nagqu Station of Plateau Climate and Environment,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Nagqu 852000,Xizang,China
    3. The Laboratory of Climatic Rosources Utilization and Disaster Prevention,Lanzhou Resources and Environment Voc-Tech University,Lanzhou 730021,Gansu,China
    4. University of Chinese Academy of Sciences,Beijing 100049,China

Received date: 2023-07-03

  Revised date: 2023-12-26

  Online published: 2023-12-26

Abstract

The Qinghai-Xizang Railway (QXR), especially the 550-kilometer segment from Xidatan to Anduo, traverses a region characterized by complex terrain, diverse landforms, and a permafrost environment.In recent years, climate warming and permafrost degradation have significantly increased maintenance demands for the QXR, which is constructed atop permafrost.To understand the impacts of the intricate terrain and landforms along the QXR on local climate changes and to provide theoretical support for its operation and maintenance, this study utilizes station observation data along the railway and employs the Weather Research and Forecasting (WRF) model driven by ERA5 data to conduct high-resolution simulations with a grid resolution of 10 km×10 km.The results indicate that the six stations along the Qinghai-Xizang Railway exhibit a general warming trend from 1998 to 2020, with the lowest temperature increase rate at 0.27 ℃·(10a)-1 and the highest at 0.56 ℃·(10a)-1 years.The WRF model's simulation results show some discrepancies with observed annual mean temperature data.The simulation results are more accurate in summer and autumn, with correlation coefficients above 0.95 in summer and above 0.80 in autumn, but less accurate in spring and winter.Regarding precipitation simulation, the Nudging method effectively reduces the wet bias in summer precipitation on the Qinghai-Xizang Plateau.Precipitation gradually increases from the northern to the southern section of the railway, peaking in the central section.However, the WRF model still exhibits cold and wet biases in temperature and precipitation simulations on the Qinghai-Xizang Plateau.Exploring new methods or utilizing higher-quality driving data may further enhance the downscaled simulation results for this region.

Cite this article

Fuquan LU , Yaoxian YANG , Zeyong HU . Fine-scale Simulation Study of Climate Characteristics along the Qinghai-Xizang Railway[J]. Plateau Meteorology, 2024 , 43(4) : 868 -882 . DOI: 10.7522/j.issn.1000-0534.2023.000106

References

null
Duan A M Wu G X Zhang Q, et al, 2006.New proofs of the recent climate warming over the Tibetan Plateau as a result of the in‐ creasing green-house gases emissions[J].Chinese Science Bulletin51(11): 1396-1400.
null
Immerzeel W W Beek L P H V BierkensI M F P2010.Climate change will affect the Asian water towers[J].Science328(5984): 1382-1385.
null
Mai X Qiu X Yang Y, et al, 2020.Impacts of Spectral Nudging Parameters on Dynamical Downscaling in Summer over Mainland China[J].Front.Earth Sci., 18 November 2020Sec.Atmospheric Science.Volume 8-2020|
null
Ni J Wu T H Zhu X F, et al, (2021).Simulation of the present and future projection of permafrost on the Qinghai-Tibet Plateau with statistical and machine learning models.Journal of Geophysical Research: Atmospheres, 126, e2020JD033402.
null
Pepin N Bradley R S Diaz H F, et al, 2015.Elevation-dependent warming in mountain regions of the world[J].Nature Climate Change5(5): 424-430.
null
Sun J Yang K Wang Y, et al, 2020.Why has the Inner Tibetan Plateau become wetter since the mid-1990s?[J].Journal of Climate33(19): 8507-8522.
null
Yan L Liu X2014.Has climatic warming over the Tibetan Plateau paused or continued in recent years[J].Journal of Earth, Ocean Atmospheric Sciences, 1(1): 13-28.
null
Yao T D Thompson L Yang W2012.Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J].Nature Climate Change, 2: 663-667.
null
Yang K Qi Q Wang C H2023.Possible impacts of vegetation cover increment on the relationship between winter snow cover anomalies over the Third Pole and summer precipitation in East Asia.npj Clim Atmos Sci 6, 140 (2023).
null
Zeng X F Zhou T J2012.Impact of spectral nudging on the simulation of a regional climate model: Different weight function.Acta Meteorogica Sinica70(5): 1084-1097.
null
Zhu Y Y Yang S S2020.Evaluation of CMIP6 for historical temperature and precipitation over the Tibetan Plateau and its comparison with CMIP5[J].Advances in Climate Change Research11(3): 239-251.
null
陈德亮, 徐柏青, 姚檀栋, 等, 2015.青藏高原环境变化科学评估: 过去、 现在与未来[J].科学通报60(32): 3025-3035.
null
Chen D L XuB Q YaoT D, et al, 2015.Assessment of past, present and future environmental changes on the Tibetan Plateau[J]. Chinese Science Bulletin60 (32): 3025-3035.
null
董美莹, 陈锋, 邱金晶, 等, 2021.ECMWF驱动场谱逼近对浙江超强台风“利奇马”(2019)精细化数值预报的影响[J].大气科学45(5): 1071-1086.
null
Dong M Y Chen F Qiu J J, et al, 2021.Impact of spectral nudging technique driven with ECMWF data on the fine numerical prediction of super typhoon Lekima (2019) in Zhejiang Province[J].Chinese Journal of Atmospheric Sciences45(5): 1071-1086.DOI: 10.3878/j.issn.1006-9895.2101. 20193
null
高学杰, 李栋梁, 赵宗慈, 等, 2003.温室效应对青藏高原及青藏铁路沿线气候影响的数值模拟[J].高原气象22(5): 458-463.
null
Gao X J Li D L Zhao Z C, et al, 2003.Numerical simulation for influence of greenhouse effects on climatic change of Qinghai Xizang Plateau along Qinghai-Xizang Railway[J].Plateau Meteorology22(5): 458 - 463.
null
李栋梁, 郭慧, 李跃清, 等, 2005.青藏高原及铁路沿线地表温度变化趋势预测[J].高原气象24(5): 685-693.
null
Li D L Guo H Li Y Q, et al, 2005.Prediction of 0 cm average ground surf ace temperature changes along Qinghai-Xizang Rail way[J].Plateau Meteorology24(5): 685-693.
null
李洪兵, 邵爱梅, 李兰倩, 2021.基于谱逼近和地面资料同化的降尺度模拟研究[J].高原气象40(4): 919-931.DOI: 10.7522/j.issn.1000-0534.2020.00068.Li H B
null
Shao A M LI L Q2021.Dynamic downscaling simulation using spectral nudging and three-dimensional assimi-lation of surface observation[J].Plateau Meteorology40(4): 919-931.DOI: 10.7522/j.issn.1000-0534.2020.00068 .
null
南卓铜, 2018.青藏高原1: 300万冻土图.国家冰川冻土沙漠科学数据中心.https: //cstr.cn/CSTR: 11738.11.ncdc.Westdc. 2020.303.Nan Z T, 2018.Permafrost map of the Tibetan Plateau at 1: 300, 000.National Cryosphere Desert Data Center.
null
石英, 吴婕, 徐影, 2021.区域气候模式水平分辨率对黄淮海流域当代气候模拟的影响[J].水科学进展32(6): 843-854.DOI: 10.14042/j.cnki.32.1309.2021.06.004.Shi Y
null
Wu J Xu Y2021.Role of horizontal resolution in regional climate simulations over the Huang-Huai-Hai River basin[J].Advances in Water Science32(6): 843-854.DOI: 10.14042/j.cnki.32.1309.2021.06.004 .
null
万玮, 肖鹏峰, 冯学智, 等, 2014.卫星遥感监测近30年来青藏高原湖泊变化[J].科学通报59(8): 701-714.
null
Wan W Xiao P F Feng X Z, et al, 2014.Monitoring lake changes of Qinghai-Tibetan Plateau over the past 30 years using satellite remote sensing data[J].Chinese Science Bulletin59(8): 701-714.
null
徐影, 丁一汇, 李栋梁, 2003.青藏地区未来百年气候变化[J].高原气象22(5): 451-457.
null
Xu Y Ding Y H Li D L2003.Climatic change over Qinghai and Xizang in 21st century[J].Plateau Meteorology22(5): 451-457
null
杨珂珂, 郭东林, 华维, 等, 2023.CMIP6 HighResMIP 对青藏高原气候模拟的评估和预估[J].大气科学学报46( 2): 193-204.
null
Yang K K Guo D L Hua W, et al, 2023.Evaluation and projection of CMIP6 HighResMIP in simulating surface air temperature and precipitation over the Tibetan Plateau[J].Transactions of Atmospheric Sciences46(2): 193-204.
null
杨耀先, 胡泽勇, 路富全, 等, 2022.青藏高原近60年来气候变化及其环境影响研究进展[J].高原气象41(1): 1-10.DOI: 10.7522/j.issn.1000-0534.2021.00117.Yang Y X
null
Hu Z Y Lu F Q, et al, 2022.Progress of recent 60 years’climate change and its environmental impacts on the Qinghai-Xizang Plateau[J].Plateau Meteorology41(1): 1-10.DOI: 10.7522/j.issn.1000-0534.2021.00117 .
null
姚檀栋, 邬光剑, 徐柏青, 等, 2019.“亚洲水塔”变化与影响[J].中国科学院院刊34(11): 1203-1209.
null
Yao C D Wu G J Xu B Q, et al, 2019.Asian Water Tower change and its impacts[J].Bulletin of Chinese Academy of Sciences34(11): 1203-1209.
null
张春雨, 刘爱利, 吕嫣冉, 等, 2023.基于 CMIP6青藏高原腹地气候模拟评估及时空分析[J].高原气象42(5): 1144-1159.DOI: 10.7522/j.issn.1000-0534.2022.00104.Zhang C Y
null
Liu A L Y R, et al, 2023.Spatial-temporal analysis and assessment of CMIP6 based climate simulation over the Qinghai-Xizang (Tibet) Plateau's Hinterland[J].Plateau Meteorology42(5): 1144-1159.DOI: 10.7522/j.issn.1000-0534.2022.00104 .
null
张宏文, 高艳红, 2020.基于动力降尺度方法预估的青藏高原降水变化[J].高原气象39(3): 477-485.DOI: 10.7522/j.issn.1000-0534.2019.00125.Zhang H W
null
Gao Y H2020.Projected changes of precipitation over the Qinghai-Tibetan Plateau based on dynamical downscaling[J].Plateau Meteorology39(3): 477-485.DOI: 10.7522/j.issn.1000-0534.2019.00125 .
null
张歆然, 2021.青藏高原东坡地区暖季降水模拟偏差分析[D].北京: 中国气象科学研究院.Zhang X R, 2021.Analysis of simulation bias of the warm season precipitation on the eastern periphery of the Tibetan Plateau[D].Beijing: Chinese Academy of Meteorological Sciences.
null
赵丹, 2022.青藏高原冬季气温年代际变化对周边气溶胶聚集的影响[D].兰州: 兰州大学.Zhao D, 2022.The influence of interdecadal variation of temperature over the Tibetan plateau on aerosols of its surroundings in winter[D].Lanzhou: Lanzhou University.
null
周天军, 张文霞, 陈晓龙, 等, 2020.青藏高原气温和降水近期、 中期与长期变化的预估及其不确定性来源[J].气象科学40(5): 697-710.
null
Zhou T J Zhang W X Chen X L, et al, 2020.The near-term, mid-term and long-term projections of temperature and precipitation changes over the Tibetan Plateau and the sources of uncertainties[J].Journal of the Meteorological Sciences40(5): 697-710.
Outlines

/