Study on Short Term Temperature Forecast Model in Jiangxi Province based on LightGBM Machine Learning Algorithm
Received date: 2023-11-07
Revised date: 2024-03-11
Online published: 2024-03-11
In order to achieve further improvement in the forecast accuracy of station temperatures and enhance the forecast capability for extreme temperatures, this study establishes a 24-hour national station daily maximum (minimum) temperature forecast model for Jiangxi Province based on the LightGBM machine-learning algorithm and the MOS forecast framework by using the surface observation data of 91 national stations in Jiangxi Province and the upper-air and surface forecast data of the ECMWF model from 2017 to 2019.The results of the 2020 evaluation show that the LightGBM model daily maximum (minimum) temperature forecast is consistent with the observed trend, and the annual average forecast is better than that of three numerical models, ECMWF, CMA-SH9 and CMA-GFS, two machine learning products, RF and SVM, and subjective revision products.In terms of the spatial and temporal distribution of forecast errors, the model's daily maximum (minimum) temperature forecast errors in winter and spring are slightly larger than those in summer and autumn; the daily maximum temperature forecast errors show the spatial distribution characteristics of "larger in the south and smaller in the north, and larger in the periphery than in the centre", while the opposite is true for the daily minimum temperatures.In terms of important weather processes, the LightGBM model has the best prediction effect among the seven products in the high temperature process; in the strong cold air process, the LightGBM model is still better than the three numerical model products and the other two machine-learning models, but the prediction effect of the daily minimum temperature is not as good as that of the subjective revision products.After a simple empirical correction for the low-temperature forecast error in the strong cold air process, the model low-temperature forecast effect is close to that of the subjective revision product.The model significance analysis shows that the recent surface observation features also contribute to the model construction, and the results can be used as a reference for model improvement and temperature forecast product development.At present, the LightGBM model temperature forecast products have been applied to meteorological operations in Jiangxi Province.
Kanghui SUN , An XIAO , Houjie XIA . Study on Short Term Temperature Forecast Model in Jiangxi Province based on LightGBM Machine Learning Algorithm[J]. Plateau Meteorology, 2024 , 43(6) : 1520 -1535 . DOI: 10.7522/j.issn.1000-0534.2024.00035
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 白永清, 林春泽, 陈正洪, 等, 2013.基于LAPS分析的WRF模式逐时气温精细化预报释用[J].气象, 39(4): 460-465.DOI: 10.7519/j.issn.1000-0526.2013.4.008.Bai Y Q , |
null | |
null | 陈昱文, 黄小猛, 李熠, 等 .2020.基于ECMWF产品的站点气温预报集成学习误差订正[J].应用气象学报, 31(4): 494-503.DOI: 10.11898/1001-7313.20200411.Chen Y W , |
null | |
null | 程胡华, 王益柏, 赵亮, 等, 2020.相似偏差订正法在短期温度预报中的应用研究[J].气象研究与应用, 41(3): 21-26.DOI: 10.19849/j.cnki.CN45-1356/P.2020.3.04.Cheng H H , |
null | |
null | 代刊, 曹勇, 钱奇峰, 等, 2016.中短期数字化天气预报技术现状及趋势[J].气象, 42(12): 1445-1455.DOI: 10.7519/j.issn.1000-0526.2016.12.002.Dai K , |
null | |
null | 贺倩, 汪明, 刘凯, 2022.基于机器学习的气温要素空间插值[J].高原气象, 41(3): 733-748.DOI: 10.7522/j.issn.1000-0534.2021.000007.He Q , |
null | |
null | 姜红, 何清, 曾晓青, 等, 2021.基于随机森林和卷积神经网络的FY-4A号卫星沙尘监测研究[J].高原气象, 40(3): 680-689.DOI: 10.7522/j.issn.1000-0534.2020.00060.Jiang H , |
null | |
null | 林纾, 李红英, 黄鹏程, 等, 2022.2022年夏季我国高温干旱特征及其环流形势分析[J].干旱气象, 40(5): 748-763.DOI: 10.11755/j.issn.1006-7639(2022)-05-0748.Lin S , |
null | |
null | 罗聪, 曾沁, 高亭亭, 等, 2012.精细化逐时滚动温度预报方法及检验[J].热带气象学报, 28(4): 552-556.DOI: 10.3969/j.issn.1004-4965.2012.04.014.Luo C , |
null | |
null | 马学款, 普布次仁, 唐叔乙, 等, 2007.人工神经网络在西藏中短期温度预报中的应用[J].高原气象, 26(3): 491-495.DOI: 10.3321/j.issn: 1000-0534.2007.03.008.Ma X K , |
null | |
null | 门晓磊, 焦瑞莉, 王鼎, 等, 2019.基于机器学习的华北气温多模式集合预报的订正方法[J].气候与环境研究, 24 (1): 116-124.DOI: 10.3878/j.issn.1006-9585.2018.18049.Men X L , |
null | |
null | 谭江红, 陈伟亮, 王珊珊, 2018.一种机器学习方法在湖北定时气温预报中的应用试验[J].气象科技进展, 8(5): 46-50.DOI: 10.3969/j.issn.2095-1973.2018.05.006.Tan J H , |
null | |
null | 王丹, 黄少妮, 高红燕, 等, 2016.递减平均法对陕西SCMOC精细化温度预报的订正效果[J].干旱气象, 34(3): 575-583.DOI: 10.11755/j.issn.1006-7639(2016)-03-0575.Wang D , |
null | |
null | 王菲, 张华, 刘梦婷, 等, 2022.气候反馈对温度空间模态的依赖性: IPCC AR6解读[J].大气科学学报, 45(6): 826-834.DOI: 10.13878/j.cnki.dqkxxb.20220928001.Wang F , |
null | |
null | 王可心, 包云轩, 朱承瑛, 等, 2021.随机森林回归法在冬季路面温度预报中的应用[J].气象, 47(1): 82-93.DOI: 10.7519/j.issn.1000-0526.2021.01.008.Wang K X , |
null | |
null | 王胜, 田红, 吴蓉, 等, 2022.2022年安徽省区域性高温和干旱过程综合评估[J].干旱气象, 40(5): 771-779.DOI: 10.11755/j.issn.1006-7639(2022)-05-0771.Wang S , |
null | |
null | 肖玉华, 赵静, 蒋丽娟, 2010.数值模式预报性能的地域性特点初步分析[J].暴雨灾害, 29(4): 28-33.DOI: 10.3969/j.issn.1004-9045.2010.04.004.Xiao Y H , |
null | |
null | 薛谌彬, 陈娴, 张瑛, 等, 2019.ECMWF高分辨率模式2m 温度预报误差订正方法研究[J].气象, 45(6): 831-842.DOI: 10.7519/j.issn.1000-0526.2019.06.009.Xue C B , |
null | |
null | 姚望玲, 陈正洪, 向玉春, 2010.武汉市气候变暖与极端天气事件变化的归因分析[J].气象, 36(11): 88-94. |
null | |
null | 叶宇辰, 陈海山, 朱司光, 等, 2024.基于机器学习的中国夏季降水延伸期预报及土壤湿度的可能贡献[J].高原气象.43(1): 184-198.DOI: 10.7522/j.issn.1000-0534.2023.00025.Ye Y C , |
null | |
null | 张延彪, 陈明轩, 韩雷, 等, 2022.数值天气预报多要素深度学习融合订正方法[J].气象学报, 80(1): 153-167.DOI: 10.11676/qxxb2021.066.Zhang Y B , |
null | |
null | 钟敏, 肖安, 许冠宇, 等, 2022.基于CMA-MESO的分级短时强降水概率预报方法研究[J].干旱气象, 40(4): 700-709.DOI: 10.11755/j.issn.1006-7639(2022)-04-0700.Zhong M , |
null | |
null | 周慧, 朱彬, 陈万隆, 等, 2005.动态学习率神经网络预测气温的尝试[J].大气科学学报, 28(3): 398-403. |
null | |
null | 朱浩楠, 刘晓冉, 孙佳, 等, 2021.基于遥感和数值模拟的重庆海绵城市热岛效应分析[J].高原气象, 40(5): 1202-1212.DOI: 10.7522/j.issn.1000-0534.2020.00089.Zhu H N , |
null |
/
〈 |
|
〉 |