A Study on the Evolution Characteristics of Qinghai Lake Ice in Recent 40 Years Based on an Analytical Model

  • Hong TANG ,
  • Yixin ZHAO ,
  • Ruijia NIU ,
  • Lijuan WEN ,
  • Mengxiao WANG
Expand
  • 1. Key Laboratory of Cryospheric Science and Frozen Soil Engineering,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,Gansu,China
    2. Qinghai Lake Comprehensive Observation and Research Station,Gangcha 812300,Qinghai,China
    3. University of Chinese Academy of Sciences,Beijing 100049,China
    4. Powerchina Sichuan Electric Power Engineer CO. ,LTD. ,Chengdu 610000,Sichuan,China

Received date: 2023-08-16

  Revised date: 2024-02-04

  Online published: 2024-09-13

Abstract

Lakes widely distribute in the Qinghai-Xizang Plateau, and most of them are seasonally frozen lakes.Under the background of global warming, lake ice thickness and phenology are changing significantly, which has a profound impact on regional climate evolution.However, the evolution characteristics of ice thickness and phenology on the climatological scale are not well understood at present.Therefore, in this paper, the lake ice thickness and phenological evolution characteristics of Qinghai Lake during 1979 -2017 were studied by using the field lake ice observation data from Qinghai Lake Xiashe Hydrology Station, MODIS Lake ice coverage dataset, meteorological observation data from Gangcha Meteorological Station and CMFD, combined with a quasi-steady state model of lake ice.The results show that the simulated average ice thickness is 0.31 m, which is close to the measured value of Xiashe Hydrology Station.The error in modelling breaking-up end is only 0.07 days, and the errors of the freezing-up start and the ice duration are 5.60 days and 5.67 days, respectively.The simulated maximum ice thickness decreases from 1979 to 2017 is in good agreement with the observed trend, that is, the ice thickness decreases by 0.003 m per year.In the freezing periods from 1979 to 2017, the freezing-up start of Qinghai Lake is delayed (0.23 d·a-1), the breaking-up end is advanced (0.32 d·a-1), and the length of the ice duration is shortened (1.02 d·a-1), especially in the 1980s (2.2 d·a-1).During the freezing periods of Qinghai Lake from 1979 to 2017 (from December to April of the following year), the downward longwave radiation and air temperature (both of which showed an increasing trend) have a significant negative correlation with the average ice thickness and the maximum ice thickness, while the downward shortwave radiation (which showed a decreasing trend) has a significant positive correlation with the maximum ice thickness and the average ice thickness.The detrending sensitivity test shows that: downward longwave radiation, air temperature, downward shortwave radiation and specific humidity are the main driving factors of mean ice thickness and maximum ice thickness variability in Qinghai Lake from 1979 to 2017, contributing 42.08%, 40.93%, -36.99% and 17.45% to mean ice thickness variability, and 44.48%, 44.68%, -34.77% and 19.92% to maximum ice thickness variability, respectively.All the meteorological driving factors contribute 83.40% and 87.01% to the two factors.It can be seen that the maximum ice thickness variability of Qinghai Lake is more susceptible to the influence of meteorological conditions than the average ice thickness variability.The results of this study provide an understanding of the long-term evolution trend of lake ice in the cryosphere, and provide a reference for the study of other lakes in the Tibetan Plateau in the cold season.

Cite this article

Hong TANG , Yixin ZHAO , Ruijia NIU , Lijuan WEN , Mengxiao WANG . A Study on the Evolution Characteristics of Qinghai Lake Ice in Recent 40 Years Based on an Analytical Model[J]. Plateau Meteorology, 2024 , 43(5) : 1152 -1162 . DOI: 10.7522/j.issn.1000-0534.2024.00015

References

null
Adrian R Oreilly C M Zagarese H, et al, 2009.Lakes as sentinels of climate change[J].Limnology and Oceanography54(6): 2283-2297.
null
Barnes H T1929.The science of ice engineering[J].The Scientific Monthly29(4): 289-297.
null
Benson B J Magnuson J J Jensen O P, et al, 2012.Extreme events, trends, and variability in Northern Hemisphere Lake-ice phenology (1855-2005)[J].Climatic Change112(2): 299-323.DOI: 10.1007/s10584-011-0212-8 .
null
Guo L N Wu Y H Zheng H X, et al, 2018.Uncertainty and variation of remotely sensed lake ice phenology across the Tibetan Plateau[J].Remote Sensing10(10): 1534.DOI: 10.3390/rs10101534 .
null
He J Yang K Tang W J, et al, 2020.The first high-resolution meteorological forcing dataset for land process studies over China[J].Scientific Data7(25).DOI: 10.1038/s41597-020-0369-y .
null
Huang W F Cheng B Zhang J R, et al, 2019.Modeling experiments on seasonal lake ice mass and energy balance in the Qinghai-Tibet Plateau: a case study[J].Hydrology and Earth System Sciences23(4): 2173-2186, DOI: 10.5194/hess-23-2173-2019 .
null
La Z Yang K Wang J B, et al, 2016.Quantifying evaporation and its decadal change for Lake Nam Co, central Tibetan Plateau[J].Journal of Geophysical Research: Atmospheres121(13): 7578-7591.DOI: 10.1002/2015JD024523 .
null
Lepp?ranta M2015.Freezing of Lakes and the Evolution of their Ice Cover[M].Berlin: Springer.
null
Li X Y Shi F Z Ma Y J, et al, 2022a.Significant winter CO 2 uptake by saline lakes on the Qinghai-Tibet Plateau[J].Global Change Biology28(6): 2041-2052.DOI: 10.1111/gcb.16054 .
null
Li X D Long D Huang Q, et al, 2022b.The state and fate of lake ice thickness in the Northern Hemisphere[J].Science Bulletin67(5): 537-546.DOI: 10.1016/j.scib.2021.10.015 .
null
Maykut G A1986.The surface heat and mass balance[M].Berlin: Springer.
null
Ptak M Sojka M Nowak B2020.Effect of climate warming on a change in thermal and ice conditions in the largest lake in Poland-Lake ?niardwy[J].Journal of Hydrology and Hydromechanics68(3): 260-270.DOI: 10.2478/johh-2020-0024 .
null
Qiu Y B Xie P F Lepp?ranta M, et al, 2019.MODIS-based daily lake ice extent and coverage dataset for Tibetan Plateau[J].Big Earth Data3(2): 170-185.
null
Reed B Budde M Spencer P, et al, 2009.Integration of MODIS-derived metrics to assess interannual variability in snowpack, lake ice, and NDVI in southwest Alaska[J].Remote Sensing of Environment113(7): 1443-1452.DOI: 10.1016/j.rse.2008. 07.020 .
null
Su D S Hu X Q Wen L J, et al, 2019.Numerical study on the response of the largest lake in China to climate change[J].Hydrology and Earth System Sciences23(4): 2093-2109.DOI: 10. 5194/hess-23-2093-2019 .
null
Stefan J1891.über die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere[J].Annalen der Physik278(2): 269-286.DOI: 10.1002/andp.18912780206 .
null
Wu Y H Guo L N Zhang B, et al, 2022.Ice phenology dataset reconstructed from remote sensing and modelling for lakes over the Tibetan Plateau[J].Scientific Data9(1): 743.DOI: 10.1038/s41597-022-01863-9 .
null
Yang J X Huang M T Zhai P M2021.Performance of the CRA-40/Land, CMFD, and ERA-Interim datasets in reflecting changes in surface air temperature over the Tibetan Plateau[J].Journal of Meteorological Research35(4): 663-672.DOI: 10.1007/s13351-021-0196-x .
null
Yang K Ding B H Qin J, et al, 2012.Can aerosol loading explain the solar dimming over the Tibetan Plateau?[J].Geophysical Research Letters39(20): 1-5.DOI: 10.1029/2012GL053733 .
null
You Q L Min J Z Kang S C2016.Rapid warming in the Tibetan Plateau from observations and CMIP5 models in recent decades[J].International Journal of Climatology36(6): 2660-2670.DOI: 10.1002/joc.4520 .
null
Zhang G Q Duan S Q2021.Lakes as sentinels of climate change on the Tibetan Plateau[J].All Earth33(1): 161-165.DOI: 10. 1080/27669645.2021.2015870 .
null
Zhang G Q Yao T D Xie H J, et al, 2014.Estimating surface temperature changes of lakes in the Tibetan Plateau using MODIS LST data[J].Journal of Geophysical Research: Atmospheres119(14): 8552-8567.DOI: 10.1002/2014JD021615 .
null
Zubov N N1955.Arctic ice-islands and how they drift[M].Ottawa: Defence Research Board.
null
曹娟, 姚晓军, 靳惠安, 等, 2021.基于实测与模拟的青海湖冰厚时空变化特征[J].湖泊科学33(2): 607-621.DOI: 10.18307/2021.0225.Cao J
null
Yao X J Jin H A, et al, 2021.Spatiotemporal variation of ice thickness of Lake Qinghai derived from field measurements and model simulation[J].Journal of Lake Sciences33(2): 607-621.DOI: 10.18307/2021.0225 .
null
秦大河, 姚檀栋, 丁永建, 等, 2017.冰冻圈科学概论[M].北京: 科学出版社, 285-286.
null
Qin D H Yao T D Ding Y J, et al, 2017.Introduction to cryosphere science[M].Beijing: Science Press, 285-286.
null
杜娟, 文莉娟, 苏东生, 2019.三套再分析资料在青藏高原湖泊模拟研究中的适用性分析[J].高原气象38(1): 101-113.DOI: 10.7522/j.issn.1000-0534.2018.00110.Du J
null
Wen L J Su D S2019.Reliability of three reanalysis datasets in simulation of three alpine lakes on the Qinghai-Tibetan Plateau[J].Plateau Meteorology38(1): 101-113.DOI: 10.7522/j.issn.1000-0534.2018.00110 .
null
雷瑞波, 2009.冰层热力学生消过程现场观测和关键参数研究[D].大连: 大连理工大学.Lei R B, 2009.On thermodynamic growth and decay processes of ice cover: field measurements and determination of crucial parameters[D].Dalian: Dalian University of Technology.
null
李晓锋, 2018.基于MODIS数据的高原湖泊冰情遥感监测方法研究[D].兰州: 西北师范大学.Li X F, 2018.The development and application of the monitoring method of lake ice based on MODIS images——a case of the Qinghai-Tibet Plateau[D].Lanzhou: Northwest Normal University.
null
马耀明, 胡泽勇, 王宾宾, 等, 2021.青藏高原多圈层地气相互作用过程研究进展和回顾[J].高原气象40(6): 1241-1262.
null
Ma Y M Hu Z Y Wang B B, et al, 2021.The Review of the Observation Experiments on Land-Atmosphere Interac‐tion Progress on the Qinghai-Xizang(Tibetan)Plateau[J].Plateau Meteorology40(6): 1241-1262.DOI: 10.7522/j.issn.1000-0534.2021.zk006 .
null
牛瑞佳, 文莉娟, 王梦晓, 等, 2023.积雪和沙尘对冰封期青海湖辐射和温度的影响[J].高原气象42(4): 913-922.DOI: 10.7522/j.issn.1000-0534.2023.00021.Niu R J
null
Wen L J Wang M X, et al, 2023.Effects of snow and dust on radiation and temperature in Qinghai Lake during ice-covered period[J].Plateau Meteorology42(4): 913-922.DOI: 10.7522/j.issn.1000-0534.2023.00021 .
null
苏荣明珠, 马伟强, 马耀明, 等, 2021.青藏高原拉昂错热力分层和混合层深度变化特征观测[J].湖泊科学33(2): 550-560.DOI: 10.18307/2021.0220.Su R M Z
null
Ma W Q Ma Y M, et al, 2021.Investigation of thermal stratification and mixed layer depth in La'ang Co in the Tibetan Plateau[J].Journal of Lake Sciences33(2): 550-560.DOI: 10.18307/2021.0220 .
null
孙永寿, 李其江, 刘弢, 等, 2021.青海湖1956~2019年水位变化原因及水量平衡分析研究[J].水文41(5): 91-96.DOI: 10.19797/j.cnki.1000-0852.20200215.Sun Y S
null
Li Q J Liu T, et al, 2021.Analysis of Qinghai Lake's water level changes and water balance analysis from 1956 to 2019[J].Journal of China Hydrology41(5): 91-96.DOI: 10.19797/j.cnki.1000-0852.20200215 .
null
王闯, 戴长雷, 宋成杰, 2022.青藏高原气候变化的时空分布特征分析[J].人民黄河44(9): 76-82.DOI: 10.3969/j.issn.1000-1379.2022.09.013.Wang C
null
Dai C L Song C J2022.Analysis of the temporal and spatial distribution characteristics of climate change in the Qinghai-Tibetan Plateau[J].Yellow River44(9): 76-82.DOI: 10.3969/j.issn.1000-1379.2022.09.013 .
null
王梦晓, 文莉娟, 李照国, 等, 2021.青藏高原鄂陵湖结冰期升温特征研究[J].高原气象40(5): 965-976.DOI: 10.7522/j.issn.1000-0534.2020.00112.Wang M X
null
Wen L J Li Z G, et al, 2021.Study on the warming characteristics during the ice-covered period of Ngoring Lake in the Qinghai-Xizang Plateau[J].Plateau Meteorology40(5): 965-976.DOI: 10.7522/j.issn.1000-0534.2020.00112 .
null
汪关信, 张廷军, 李晓东, 等, 2021.利用被动微波探测青海湖湖冰物候变化特征[J].冰川冻土43(1): 296-310.DOI: 10.7522/j.issn.1000-0240.2020.0528.Wang G X
null
Zhang T J Li X D, et al, 2021.Detecting changes of ice phenology using satellite passive microwave remote sensing data in Qinghai Lake[J].Journal of Glaciology and Geocryology43(1): 296-310.DOI: 10.7522/j.issn.1000-0240.2020.0528 .
null
王智颖, 吴艳红, 常军, 等, 2017.青藏高原湖冰物候的时空变化及其影响因素[J].北京工业大学学报43(5): 701-709.DOI: 10.11936/bjutxb2016110002.Wang Z Y
null
Wu Y H Chang J, et al, 2017.Temporal and spatial variation of lake ice phenology and its influencing factors in the Tibetan Plateau[J].Journal of Beijing University of Technology43(5): 701-709.DOI: 10.11936/bjutxb2016110002 .
null
谢婷, 马育军, 张午朝, 2021.青海湖北岸大气向下长波辐射特征及云的影响[J].干旱气象39(2): 288-295.DOI: 10.11755/j.issn.1006-7639(2021)-02-0288.Xie T
null
Ma Y J Zhang W Z2021, Characteristics of atmospheric downward longwave radiation and influence of cloud on the Northern Shore of the Qinghai Lake[J].Journal of Arid Meteorology39(2): 288-295.DOI: 10.11755/j.issn.1006-7639(2021)-02-0288 .
null
杨显玉, 吕雅琼, 文军, 等, 2022.扎陵湖和鄂陵湖夏季典型地表水热交换特征的数值模拟[J].高原气象41(1): 143-152.DOI: 10.7522/j.issn.1000-0534.2020.00090.Yang X Y
null
Lv Y Q Wen J, et al, 2022.Numerical simulation of typical characteristics of land surface water-heat exchange over Gyaring Lake and Ngoring Lake in Summer[J].Plateau Meteorology41(1): 143-152.DOI: 10.7522/j.issn.1000-0534.2020.00090 .
null
杨耀先, 胡泽勇, 路富全, 等, 2022.青藏高原近60年来气候变化及其环境影响研究进展[J].高原气象41(1): 1-10.DOI: 10.7522/j.issn.1000-0534.2021.00117.Yang Y X
null
Hu Z Y Lu F Q, et al, 2022.Progress of recent 60 years' climate change and its environmental impacts on the Qinghai-Xizang Plateau[J].Plateau Meteorology41(1): 1-10.DOI: 10.7522/j.issn.1000-0534.2021.00117 .
null
曾昔, 2018.全球变暖背景下青藏高原湖泊变化特征及其对气候的响应[D].成都: 成都信息工程大学.Zeng X, 2018.The characteristic of lake change and its response to climate in Qinghai-Tibet Plateau under the background of global warming[D].Chengdu: Chengdu University of Information Technology.
null
张运林, 秦伯强, 朱广伟, 等, 2022.论湖泊重要性及我国湖泊面临的主要生态环境问题[J].科学通报67(30): 3503-3519.DOI: 10.1360/TB-2022-0178.Zhang Y L
null
Qin B Q Zhu G W, et al, 2022.Importance and main ecological and environmental problems of lakes in China[J].Chinese Science Bulletin67(30): 3503-3519.DOI: 10.1360/TB-2022-0178 .
null
赵仪欣, 文莉娟, 王梦晓, 等, 2023.基于能量平衡的分析模型在青海湖湖冰模拟中的应用[J].高原气象42(3): 590-602.DOI: 10.7522/j.issn.1000-0534.2022.00042.Zhao Y X
null
Wen L J Wang M X, et al, 2023.Application of the analytic model based on energy balance into the lake ice simulation of Qinghai Lake[J].Plateau Meteorology42(3): 590-602.DOI: 10.7522/j.issn.1000-0534.2022.00042 .
null
朱立平, 张国庆, 杨瑞敏, 等, 2019.青藏高原最近40年湖泊变化的主要表现与发展趋势[J].中国科学院院刊34(11): 1254-1263.DOI: 10.16418/j.issn.1000-3045.2019.11.008.Zhu L P
null
Zhang G Q Yang R M, et al, 2019.Lake variations on Tibetan Plateau of recent 40 years and future changing tendency[J].Bulletin of Chinese Academy of Sciences34(11): 1254-1263.DOI: 10.16418/j.issn.1000-3045.2019.11.008 .
Outlines

/