A Study on the Evolution Characteristics of Qinghai Lake Ice in Recent 40 Years Based on an Analytical Model
Received date: 2023-08-16
Revised date: 2024-02-04
Online published: 2024-09-13
Lakes widely distribute in the Qinghai-Xizang Plateau, and most of them are seasonally frozen lakes.Under the background of global warming, lake ice thickness and phenology are changing significantly, which has a profound impact on regional climate evolution.However, the evolution characteristics of ice thickness and phenology on the climatological scale are not well understood at present.Therefore, in this paper, the lake ice thickness and phenological evolution characteristics of Qinghai Lake during 1979 -2017 were studied by using the field lake ice observation data from Qinghai Lake Xiashe Hydrology Station, MODIS Lake ice coverage dataset, meteorological observation data from Gangcha Meteorological Station and CMFD, combined with a quasi-steady state model of lake ice.The results show that the simulated average ice thickness is 0.31 m, which is close to the measured value of Xiashe Hydrology Station.The error in modelling breaking-up end is only 0.07 days, and the errors of the freezing-up start and the ice duration are 5.60 days and 5.67 days, respectively.The simulated maximum ice thickness decreases from 1979 to 2017 is in good agreement with the observed trend, that is, the ice thickness decreases by 0.003 m per year.In the freezing periods from 1979 to 2017, the freezing-up start of Qinghai Lake is delayed (0.23 d·a-1), the breaking-up end is advanced (0.32 d·a-1), and the length of the ice duration is shortened (1.02 d·a-1), especially in the 1980s (2.2 d·a-1).During the freezing periods of Qinghai Lake from 1979 to 2017 (from December to April of the following year), the downward longwave radiation and air temperature (both of which showed an increasing trend) have a significant negative correlation with the average ice thickness and the maximum ice thickness, while the downward shortwave radiation (which showed a decreasing trend) has a significant positive correlation with the maximum ice thickness and the average ice thickness.The detrending sensitivity test shows that: downward longwave radiation, air temperature, downward shortwave radiation and specific humidity are the main driving factors of mean ice thickness and maximum ice thickness variability in Qinghai Lake from 1979 to 2017, contributing 42.08%, 40.93%, -36.99% and 17.45% to mean ice thickness variability, and 44.48%, 44.68%, -34.77% and 19.92% to maximum ice thickness variability, respectively.All the meteorological driving factors contribute 83.40% and 87.01% to the two factors.It can be seen that the maximum ice thickness variability of Qinghai Lake is more susceptible to the influence of meteorological conditions than the average ice thickness variability.The results of this study provide an understanding of the long-term evolution trend of lake ice in the cryosphere, and provide a reference for the study of other lakes in the Tibetan Plateau in the cold season.
Key words: Qinghai Lake; quasi-steady model; lake ice thickness; ice phenology
Hong TANG , Yixin ZHAO , Ruijia NIU , Lijuan WEN , Mengxiao WANG . A Study on the Evolution Characteristics of Qinghai Lake Ice in Recent 40 Years Based on an Analytical Model[J]. Plateau Meteorology, 2024 , 43(5) : 1152 -1162 . DOI: 10.7522/j.issn.1000-0534.2024.00015
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 秦大河, 姚檀栋, 丁永建, 等, 2017.冰冻圈科学概论[M].北京: 科学出版社, 285-286. |
null | |
null | 杜娟, 文莉娟, 苏东生, 2019.三套再分析资料在青藏高原湖泊模拟研究中的适用性分析[J].高原气象, 38(1): 101-113.DOI: 10.7522/j.issn.1000-0534.2018.00110.Du J , |
null | |
null | 雷瑞波, 2009.冰层热力学生消过程现场观测和关键参数研究[D].大连: 大连理工大学.Lei R B, 2009.On thermodynamic growth and decay processes of ice cover: field measurements and determination of crucial parameters[D].Dalian: Dalian University of Technology. |
null | 李晓锋, 2018.基于MODIS数据的高原湖泊冰情遥感监测方法研究[D].兰州: 西北师范大学.Li X F, 2018.The development and application of the monitoring method of lake ice based on MODIS images——a case of the Qinghai-Tibet Plateau[D].Lanzhou: Northwest Normal University. |
null | 马耀明, 胡泽勇, 王宾宾, 等, 2021.青藏高原多圈层地气相互作用过程研究进展和回顾[J].高原气象, 40(6): 1241-1262. |
null | |
null | 牛瑞佳, 文莉娟, 王梦晓, 等, 2023.积雪和沙尘对冰封期青海湖辐射和温度的影响[J].高原气象, 42(4): 913-922.DOI: 10.7522/j.issn.1000-0534.2023.00021.Niu R J , |
null | |
null | 苏荣明珠, 马伟强, 马耀明, 等, 2021.青藏高原拉昂错热力分层和混合层深度变化特征观测[J].湖泊科学, 33(2): 550-560.DOI: 10.18307/2021.0220.Su R M Z , |
null | |
null | 孙永寿, 李其江, 刘弢, 等, 2021.青海湖1956~2019年水位变化原因及水量平衡分析研究[J].水文, 41(5): 91-96.DOI: 10.19797/j.cnki.1000-0852.20200215.Sun Y S , |
null | |
null | 王闯, 戴长雷, 宋成杰, 2022.青藏高原气候变化的时空分布特征分析[J].人民黄河, 44(9): 76-82.DOI: 10.3969/j.issn.1000-1379.2022.09.013.Wang C , |
null | |
null | 王梦晓, 文莉娟, 李照国, 等, 2021.青藏高原鄂陵湖结冰期升温特征研究[J].高原气象, 40(5): 965-976.DOI: 10.7522/j.issn.1000-0534.2020.00112.Wang M X , |
null | |
null | 汪关信, 张廷军, 李晓东, 等, 2021.利用被动微波探测青海湖湖冰物候变化特征[J].冰川冻土, 43(1): 296-310.DOI: 10.7522/j.issn.1000-0240.2020.0528.Wang G X , |
null | |
null | 王智颖, 吴艳红, 常军, 等, 2017.青藏高原湖冰物候的时空变化及其影响因素[J].北京工业大学学报, 43(5): 701-709.DOI: 10.11936/bjutxb2016110002.Wang Z Y , |
null | |
null | 谢婷, 马育军, 张午朝, 2021.青海湖北岸大气向下长波辐射特征及云的影响[J].干旱气象, 39(2): 288-295.DOI: 10.11755/j.issn.1006-7639(2021)-02-0288.Xie T , |
null | |
null | 杨显玉, 吕雅琼, 文军, 等, 2022.扎陵湖和鄂陵湖夏季典型地表水热交换特征的数值模拟[J].高原气象, 41(1): 143-152.DOI: 10.7522/j.issn.1000-0534.2020.00090.Yang X Y , |
null | |
null | 杨耀先, 胡泽勇, 路富全, 等, 2022.青藏高原近60年来气候变化及其环境影响研究进展[J].高原气象, 41(1): 1-10.DOI: 10.7522/j.issn.1000-0534.2021.00117.Yang Y X , |
null | |
null | 曾昔, 2018.全球变暖背景下青藏高原湖泊变化特征及其对气候的响应[D].成都: 成都信息工程大学.Zeng X, 2018.The characteristic of lake change and its response to climate in Qinghai-Tibet Plateau under the background of global warming[D].Chengdu: Chengdu University of Information Technology. |
null | 张运林, 秦伯强, 朱广伟, 等, 2022.论湖泊重要性及我国湖泊面临的主要生态环境问题[J].科学通报, 67(30): 3503-3519.DOI: 10.1360/TB-2022-0178.Zhang Y L , |
null | |
null | 赵仪欣, 文莉娟, 王梦晓, 等, 2023.基于能量平衡的分析模型在青海湖湖冰模拟中的应用[J].高原气象, 42(3): 590-602.DOI: 10.7522/j.issn.1000-0534.2022.00042.Zhao Y X , |
null | |
null | 朱立平, 张国庆, 杨瑞敏, 等, 2019.青藏高原最近40年湖泊变化的主要表现与发展趋势[J].中国科学院院刊, 34(11): 1254-1263.DOI: 10.16418/j.issn.1000-3045.2019.11.008.Zhu L P , |
null |
/
〈 |
|
〉 |