Analysis and Simulation of the Start of Growing Season on the Qinghai-Xizang Plateau Based on Remote Sensing Vegetation Index

  • Lei WANG ,
  • Xinyi ZHAO
Expand
  • 1. College of Urban and Environmental Sciences,Peking University,Beijing 100871,China
    2. Laboratory for Earth Surface Processes (LESP) Ministry of Education,Beijing 100871,China

Received date: 2023-10-16

  Revised date: 2024-02-06

  Online published: 2024-09-13

Abstract

The Qinghai-Xizang Plateau (QXP) is an important herbage producing area, ecological barrier and water conservation area, the vegetation ecological process on which can directly affect the changes of China and even East Asia.With global warming, the phenological period of vegetation on the QXP is constantly changing, affecting climate and ecosystem through carbon cycle and hydrothermal cycle, etc.The study of phenological change and its influencing factors has become a key issue, and the construction of models that can realize future phenological prediction is of great scientific significance.In this paper, based on the Normalized Difference Vegetation Index acquired by satellites during 2000 -2020 (MODIS NDVI), the dynamic threshold method was used to extract the start of growing season (SOS) on the QXP, and its spatiotemporal variation was analyzed in combination with vegetation types, so as to construct multiple phenological models of SOS, air temperature and soil moisture, exploring the hydrothermal conditions required for different regions and types of vegetation to start growing.The results showed that: (1) From 2000 to 2020, the overall SOS advance trend of the QXP was most significant in the eastern part of the region, where the SOS advance rate exceeded 10 d·(10a)-1.Coniferous forests, scrub, meadows, and alpine vegetation cover areas had a high percentage of SOS advance, and grasslands had about 50 % of slightly delayed areas.(2) The eastern and northern regions of the QXP showed an obvious warming and humidification trend.The average annual temperature rise rate was about 0.36 ℃·(10a)-1, and the average annual soil moisture increase rate was about 3.8×10-4 m3·m-3p<0.01).(3) The parameters of the four phenological models showed that the vegetation growth in the eastern and southern QXP required higher hydrothermal conditions.The main controlling factor for vegetation SOS in the south was air temperature, while in the north it was soil moisture.The temperature and soil moisture thresholds and main controlling factor of different vegetation types were also closely related to their spatial distribution locations.(4) The cumulative temperature and cumulative soil moisture threshold model established in this paper has the best simulation effect for the main vegetation types (grassland, meadow and alpine vegetation) on the QXP, and the root-mean-square error is only about 8 days, which has reference significance for the future SOS prediction and the interaction mechanism between phenology and climate on the QXP.

Cite this article

Lei WANG , Xinyi ZHAO . Analysis and Simulation of the Start of Growing Season on the Qinghai-Xizang Plateau Based on Remote Sensing Vegetation Index[J]. Plateau Meteorology, 2024 , 43(5) : 1163 -1176 . DOI: 10.7522/j.issn.1000-0534.2024.00020

References

null
Beck H E Mcvicar T R Dijk A, et al, 2011.Global evaluation of four AVHRR-NDVI data sets: intercomparison and assessment against Landsat imagery[J].Remote Sensing of Environment115(10): 2547-2563.DOI: 10.1016/j.rse.2011.05.012 .
null
Bi H Y Ma J W Zheng W J, et al, 2016.Comparison of soil moisture in GLDAS model simulations and in situ observations over the Tibetan Plateau[J].Journal of Geophysical Research Atmospheres121(6): 2658-2678.DOI: 10.1002/2015jd024131 .
null
Caffarra A Donnelly A Chuine I, et al, 2011.Modelling the timing of Betula pubescens budburst.I.Temperature and photoperiod: a conceptual model[J].Climate Research46(2): 147-157.DOI: 10.3354/cr00980 .
null
Cao R Y Shen M G Zhou J, et al, 2018.Modeling vegetation green-up dates across the Tibetan Plateau by including both seasonal and daily temperature and precipitation[J].Agricultural and Forest Meteorology, 249: 176-186.DOI: 10.1016/j.agrformet. 2017.11.032 .
null
Chen X Q An S Inouye D W, et al, 2015.Temperature and snowfall trigger alpine vegetation green‐up on the world's roof[J].Global Change Biology21(10): 3635-3646.DOI: 10.1111/gcb.12954 .
null
Chen X Q Li J Xu L, et al, 2014.Modeling greenup date of dominant grass species in the Inner Mongolian Grassland using air temperature and precipitation data[J].International Journal of Biometeorology, 58: 463-471.DOI: 10.1007/s00484-013-0732-1 .
null
J?nsson P Eklundh L2002.Seasonality extraction by function fitting to time-series of satellite sensor data[J].IEEE Transactions on Geoscience and Remote Sensing40(8): 1824-1832.DOI: 10.1109/tgrs.2002.802519 .
null
Liu Q Fu Y H Zeng Z Z, et al, 2016.Temperature, precipitation, and insolation effects on autumn vegetation phenology in temperate China[J].Global Change Biology22(2): 644-655.DOI: 10.1111/gcb.13081 .
null
Liu X G Chen Y N Li Z, et al, 2021.Driving Forces of the Changes in Vegetation Phenology in the Qinghai-Tibet Plateau[J].Remote Sensing13(23): 4952.DOI: 10.3390/rs13234952 .
null
Menzel A2002.Phenology: its importance to the global change community[J].Climatic Change54(4): 379-385.DOI: 10. 1023/a: 1016125215496 .
null
Piao S L Cui M D Chen A P, et al, 2011.Altitude and temperature dependence of the change in the spring vegetation green up data from 1982 to 2006 in the Qinghai Xizang Plateau[J].Agricultural and Forest Meteorology151(12): 1599-1608.DOI: 10.1016/j.agrformet.2011.06.016 .
null
Piao S L Fang J Y Zhou L M, et al, 2006.Variations in satellite-derived phenology in China's temperate vegetation[J].Global Change Biology12(4): 672-685.DOI: 10.1111/J.1365-2486.2006.01123.X .
null
Piao S L Wang J W Li X Y, et al, 2022.Spatio-temporal changes in the speed of canopy development and senescence in temperate China[J].Global Change Biology28(24): 7366-7375.DOI: 10.1111/gcb.16408 .
null
Richardson A D Keenan T F Migliavacca M, et al, 2013.Climate change, phenology, and phenological control of vegetation feedbacks to the climate system[J].Agricultural and Forest Meteorology, 169: 156-173.DOI: 10.1016/j.agrformet.2012.09.012 .
null
Richardson E A Seeley S D Walker D R1974.A model for estimating the completion of rest for ‘redhaven’and ‘elberta’peach trees1[J].Hort Science9(4): 331-332.DOI: 10.21273/HORTSCI.9.4.331
null
Shen M G Wang S P Jiang N, et al, 2022.Plant phenology changes and drivers on the Qinghai-Tibetan Plateau[J].Nature Review Earth Environment3(10): 633-651.DOI: 10.1038/s43017-022-00317-5 .
null
Sun Q L Li B L Yuan Y C, et al, 2018.A prognostic phenology model for alpine meadows on the Qinghai-Tibetan Plateau[J].Ecological Indicators, 93: 1089-1100.DOI: 10.1016/j.ecolind. 2018.05.061 .
null
Wang X F Xiao J F Li X2019.No trends in spring and autumn phenology during the global warming hiatus[J].Nature Communications10(1): 1-10.DOI: 10.1038/s41467-019-10235-8 .
null
Xu L Chen X Q2013.Regional unified model-based leaf unfolding prediction from 1960 to 2009 across northern Chian[J], Global Change Biology19(4): 1275-1284.DOI: 10.1111/gcb.12095 .
null
Yu H Y Eike L Xu J C, et al, 2010.Winter and spring warming result in delayed spring phenology on the Tibetan Plateau[J].Proceedings of the National Academy of Sciences of the United States of America107(51): 22151-22156.DOI: 10.1073/pnas.1012490107 .
null
Zaitchik B F Rodell M Olivera F2010.Evaluation of the Global Land Data Assimilation System using global river discharge data and a source-to-sink routing scheme[J].Water Resources Research46(6): 2840-2849.DOI: 10.1029/2009WR007811 .
null
Zhang G L Zhang Y L Dong J W, et al, 2013.Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011[J].Proceedings of the National Academy of Sciences of the United States of America110(11): 4309-4314.DOI: 10.1073/pnas.1210423110 .
null
Zhang R S Zhou Y K Hu T Y, et al, 2023.Detecting the Spatiotemporal Variation of Vegetation Phenology in Northeastern China Based on MODIS NDVI and Solar-Induced Chlorophyll Fluorescence Dataset[J].Sustainability15(7): 6012.DOI: 10.3390/su15076012 .
null
Zheng Z T Zhu W Q Chen G S, et al, 2016.Continuous but diverse advancement of spring-summer phenology in response to climate warming across the Qinghai-Tibetan Plateau[J].Agricultural and Forest Meteorology, 223: 194-202.DOI: 10.1016/j.agrformet. 2016.04.012 .
null
鲍艳, 王玉琦, 南素兰, 等, 2023.青藏高原植被对未来气候变暖的反馈[J].高原气象42(3): 553-563.DOI: 10.7522/j.issn.1000-0534.2021.00109.Bao Y
null
Wang Y Q Nan S L, et al, 2023.Response of vegetation over the Qinghai-Xizang Plateau to projected warming climate[J].Plateau Meteorology42(3): 553-563.DOI: 10.7522/j.issn.1000-0534.2021.00109 .
null
鲍艳, 魏宇晨, 南素兰, 等, 2023.全球2 ℃温升背景下青藏高原植被对气候变化的响应[J].高原气象42(1): 49-59.DOI: 10.7522/j.issn.1000-0534.2022.00074.Bao Y
null
Wei Y C Nan S L, et al, 2023.Vegetation over the Qinghai-Xizang Plateau in response to climate change with a 2 ℃ global warming[J].Plateau Meteorology42(1): 49-59.DOI: 10.7522/j.issn.1000-0534.2022.00074 .
null
孔冬冬, 张强, 黄文琳, 等, 2017.1982-2013年青藏高原植被物候变化及气象因素影响[J].地理学报72(1): 39-52.DOI: 10.11821/dlxb201701004.Kong D D
null
Zhang Q Huang W L, et al, 2017.Vegetation phenology change in Tibetan Plateau from 1982 to2013 and its related meteorological factors[J].Acta Geographica Sinica72(1): 39-52.DOI: 10.11821/dlxb201701004 .
null
李林, 陈晓光, 王振宇, 等, 2010.青藏高原区域气候变化及其差异性研究[J].气候变化研究进展6(3): 181-186.DOI: 10.3969/j.issn.1673-1719.2010.03.005.Li L
null
Chen X G Wang Z Y, et al, 2010.Climate change and its regional differences over the Tibetan Plateau[J].Climate Change Research6(3): 181-186.DOI: 10.3969/j.issn.1673-1719.2010.03.005 .
null
刘志红, Tim R M Li L T, 等, 2008.基于ANUSPLIN的时间序列气象要素空间插值[J].西北农林科技大学学报(自然科学版), 10: 227-234.DOI: 10.3321/j.issn: 1671-9387.2008.10.038.Liu Z H
null
Tim R M Li L T, et al, 2008.Interpolation for time series of meteorological variables using ANUSPLIN[J].Journal of Northwest A & F University (Nat.Sci.Ed.), 10: 227-234.DOI: 10.3321/j.issn: 1671-9387.2008.10.038 .
null
陆佩玲, 于强, 贺庆棠, 2006.植物物候对气候变化的响应[J].生态学报26(3): 923-929.DOI: 10.3321/j.issn: 1000-0933.2006.03.038.Lu P L
null
Yu Q He Q T2006.Responses of plant phenology to climatic change[J].Acta Ecologica Sinica26(3): 923-929.DOI: 10.3321/j.issn: 1000-0933.2006.03.038 .
null
罗斯琼, 李红梅, 马迪, 等, 2022.三江源冻土-植被相互作用及气候效应研究现状及展望[J].高原气象41(2): 255-267.DOI: 10.7522/j.issn.1000-0534.2021.00098.Luo S Q
null
Li H M Ma D, et al, 2022.Review and prospects of frozen soil-vegetation interaction and climate effects in the Three Rivers Source Region[J].Plateau Meteorology41(2): 255-267.DOI: 10.7522/j.issn.1000-0534.2021.00098 .
null
宋春桥, 游松财, 柯灵红, 等, 2011.藏北高原植被物候时空动态变化的遥感监测研究[J].植物生态学报35(8): 853-863.DOI: 10.3724/SP.J.1258.2011.00853.Song C Q
null
You S C Ke L H, et al, 2011.Spatio-temporal variation of vegetation phenology in the Northern Tibetan Plateau as detected by MODIS remote sensing[J].Chinese Journal of Plant Ecology35(8): 853-863.DOI: 10.3724/SP.J.1258.2011.00853 .
null
王灏, 胡泽勇, 杨耀先, 等, 2023.近60 年青藏高原季风期降水的南北变化特征及机理研究[J].高原气象42(4): 848-857.DOI: 10.7522/j.issn.1000-0534.2023.00034.Wang H
null
Hu Z Y Yang Y X, et al, 2023.The changing features and the mechanism of the precipitation in Southern-Northern Qinghai-Xizang Plateau during monsoon period in last 60 years[J].Plateau Meteorology42(4): 848-857.DOI: 10.7522/j.issn.1000-0534.2023.00034 .
null
王敏钰, 罗毅, 张正阳, 等, 2022.植被物候参数遥感提取与验证方法研究进展[J].遥感学报26(3): 431-455.DOI: 10.11834/jrs.20211601.Wang M Y
null
Luo Y Zhang Z Y, et al, 2022.Recent advances in remote sensing of vegetation phenology: retrieval algorithm and validation strategy[J].National Remote Sensing Bulletin26(3): 431-455.DOI: 10.11834/jrs.20211601 .
null
杨耀先, 胡泽勇, 路富全, 等, 2022.青藏高原近60年来气候变化及其环境影响研究进展[J].高原气象41(1): 1-10.DOI: 10.7522/j.issn.1000-0534.2021.00117.Yang Y X
null
Hu Z Y Lu F Q, et al, 2022.Progress of recent 60 years’ climate change and its environmental impacts on the Qinghai-Xizang Plateau[J].Plateau Meteorology41(1): 1-10.DOI: 10.7522/j.issn.1000-0534.2021.00117 .
null
张晓克, 杜心栋, 鲁旭阳, 等, 2019.青藏高原高寒草地物候的研究进展[J].遥感技术与应用34(2): 337-344.DOI: 10.11873/j.issn.1004-0323.2019.2.0337.Zhang X K
null
Du X D Lu X Y, et al, 2019.A review on alpine grassland phenology on the Tibetan Plateau[J].Remote Sensing Technology and Application34(2): 337-344.DOI: 10.11873/j.issn.1004-0323.2019.2.0337 .
null
张学霞, 葛全胜, 郑景云, 2004.北京地区气候变化和植被的关系——基于遥感数据和物候资料的分析[J].植物生态学报28(4): 499-506.DOI: 10.17521/cjpe.2004.0068.Zhang X X
null
Ge Q S Zheng J Y2004.Relationships between climate and vegetation in Beijing using remote sensed data and phenological data[J].Chinese Journal of Plant Ecology28(4): 499-506.DOI: 10.17521/cjpe.2004.0068 .
null
朱智, 师春香, 张涛, 2018.四套再分析土壤湿度资料在中国区域的适用性分析[J].高原气象37(1): 240-252.DOI: 10.7522/j.issn.1000-0534.2017.00033.Zhu Z
null
Shi C X Zhang T2018.Applicability analysis of four soil moisture reanalysis datasets in China[J].Plateau Meteorology37(1): 240-252.DOI: 10.7522/j.issn.1000-0534.2017.00033 .
Outlines

/