Sensitivity Simulation Study of a Severe Rainfall Event in Sichuan Province under the Influence of Complex Underlying Surfaces

  • Peile LIANG ,
  • Lei WANG ,
  • Xiehui LI ,
  • Zilin FU
Expand
  • School of Atmospheric Sciences,Chengdu University of Information Technology,Chengdu 610225,Sichuan,China

Received date: 2023-07-18

  Revised date: 2024-02-06

  Online published: 2024-09-24

Abstract

The Land surface of the Sichuan Basin is characterized by complexity and diversity, with frequent occurrences of heavy rainfall.This study utilizes global reanalysis data from the U.S.National Centers for Environmental Prediction and various categories of land use data, including default land use data from the WRF model, MODIS (Moderate Resolution Imaging Spectroradiometer), and USGS (United States Geological Survey).Additionally, the 2015 LUCC2015 (Land use datasets in China 2015) datasets and the 2015 GLASS (Global Land Surface Satellite) land use datasets are incorporated.The WRF(Weather Research and Forecasting)model is used to simulate a heavy rainfall event in Sichuan Province.The impact of changes in land surface classification and variations in terrain height on heavy rainfall is discussed through four sets of land use experiments and two sets of terrain sensitivity experiments.The results indicate that the experiments involving different land use types have a significant impact on regions experiencing heavy precipitation.In comparison to the MODIS experiment, the precipitation distribution from the USGS experiment is more concentrated, with a larger coverage area for intense precipitation centers; the LUCC2015 experiment results in a reduction in rainfall intensity in the northeastern part of the Sichuan Basin, accompanied by a more concentrated precipitation distribution; the GLASS experiment simulation, characterized by a relatively uniform land use, results in a reduction in the intensity of both intense precipitation centers.Additionally, the precipitation centers in the northeastern part of Sichuan shift southward.Various land use types also exert influence on near-surface meteorological parameter fields.Through a comprehensive analysis of the various land use experiments, it is evident that a reduction in urban built-up areas results in a decrease in 2 m temperature by 0.5 to 1 ℃; the reduction in vegetation coverage results in an increase in 2 m temperature and an enhancement of 10 m wind speed; the decrease in surface roughness leads to a significant enhancement in 10 m wind speed, with a magnitude of change ranging from 2 to 4 m·s-1.Compared to the default land use types in WRF, the simulated results under the underlying surface types in the LUCC2015 experiment are better.The topography exerts a pronounced influence on heavy rainfall.Following the reduction in elevation of the western mountainous region in the basin, the absence of mountain barriers allows for a more abundant presence of lower-level water vapor and energy.Consequently, moisture and energy can be transported to more northern regions of Sichuan.With the reduction in elevation of the terrain, the low-level airflow intensifies convergence ahead of the mountains, triggering stronger upward motion of air and resulting in enhanced precipitation intensity.This phenomenon leads to a westward shift in the precipitation location and a more concentrated coverage of rainfall.Conversely, with the uplift of the terrain, the mountainous barrier impedes the entry of warm and moist airflow from the south.As a result, energy and moisture become more dispersed, causing a reduction in airflow convergence in the western and eastern parts of the basin.The weakening of low-level airflow ascent leads to a decrease in precipitation intensity and a more dispersed distribution of rainfall.

Cite this article

Peile LIANG , Lei WANG , Xiehui LI , Zilin FU . Sensitivity Simulation Study of a Severe Rainfall Event in Sichuan Province under the Influence of Complex Underlying Surfaces[J]. Plateau Meteorology, 2024 , 43(5) : 1286 -1301 . DOI: 10.7522/j.issn.1000-0534.2024.00019

References

null
Dudhia J1989.Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J].Journal of Atmospheric Sciences46(20): 3077-3107.DOI: 10.1029/2008JD011249 .
null
Friedl M A Sulla-Menashe D Tan B, et al, 2010.MODIS Collection 5 global land cover: algorithm refinements and characterization of new datasets[J].Remote sensing of Environment114(1): 168-182.DOI: 10.1016/J.RSE.2009.08.016 .
null
Homer C Dewitz J Yang L, et al, 2015.Completion of the 2011 national land cover database for the conterminous United States-representing a decade of land cover change information[J].Photogrammetric Engineering & Remote Sensing81(5): 345-354.DOI: 10.1016/S0099-1112(15)30100-2 .
null
Hong S B Lakshmi V Small E E, et al, 2009.Effects of vegetation and soil moisture on the simulated land surface processes from the coupled WRF/Noah model[J].Journal of Geophysical Research Atmospheres114(D18): D18118.DOI: 10.1029/2008JD011249 .
null
Hong S Y Noh Y Dudhia J2006.A new vertical diffusion package with an explicit treatment of entrainment processes[J].Monthly Weather Review134(9), 2318-2341.DOI: https: //doi.org/10.1175/MWR3199.1 .
null
Jiménez P A Dudhia J González-Rouco J F, et al, 2012.A revised scheme for the WRF surface layer formulation[J].Monthly Weather Review140(3): 898-918.DOI: https: //doi.org/10. 1175/MWR-D-11-00056.1 .
null
Kessler E1995.On the continuity and distribution of water substance in atmospheric circulations[J].Atmospheric Research38(1-4): 109-145.DOI: 10.1016/0169-8095(94)00090-Z .
null
Khansalari S Ranjbar-Saadatabadi A Fazel-Rastgar F, et al, 2021.Synoptic and dynamic analysis of a flash flood-inducing heavy rainfall event in arid and semi-arid central-northern Iran and its simulation using the WRF model[J].Dynamics of Atmospheres and Oceans(prepublish), 93: 101198.DOI: 10.1016/j.dynatmoce.2020.101198 .
null
Li Y H Zhao C L Zhang T J, et al, 2018.Impacts of land-use data on the simulation of surface air temperature in northwest China[J].Journal of Meteorological Research32(6): 896-908.DOI: 10.1007/s13351-018-7151-5 .
null
Liu H Gong P Wang J, et al, 2020.Annual dynamics of global land cover and its long-term changes from 1982 to 2015[J].Earth System Science Data12(2): 1217-1243.DOI: 10.5194/essd-12-1217-2020 .
null
Mlawer E J Taubman S J Brown P D, et al, 1997.Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated‐k model for the longwave[J].Journal of Geophysical Research: Atmospheres102(D14): 16663-16682.DOI: 10.1029/97JD00237 .
null
Ruiz J J Saulo C Kalnay E2012.How sensitive are probabilistic precipitation forecasts to the choice of calibration algorithms and the ensemble generation method?Part II: sensitivity to ensemble generation method[J].Meteorological Applications19(3): 302-313.DOI: 10.1002/met.262 .
null
Skamarock W C Klemp J B Dudhia J, et al, 2019.A description of the advanced research WRF version 4[J].NCAR tech.note ncar/tn-556+str, 145.
null
Tewari M Chen F Wang W, et al, 2004.Implementation and verification of the unified NOAH land surface model in the WRF model[C].20th conference on weather analysis and forecasting/16th conference on numerical weather prediction, 1115(6): 2165-2170.
null
Wang D Miao J F Tan Z M2013.Impacts of topography and land cover change on thunderstorm over the Huangshan (Yellow Mountain) area of China[J].Natural Hazards, 67: 675-699.DOI: 10.1007/s11069-013-0595-0 .
null
Zhang H L Pu Z X Zhang X B2013.Examination of errors in near-surface temperature and wind from WRF numerical simulations in regions of complex terrain[J].Weather and Forecasting28(3).DOI: 10.1175/WAF-D-12-00109.1 .
null
冯箫, 施萧, 2019.海南岛不同土地覆盖资料对WRF模拟的影响[J].沙漠与绿洲气象13(2): 123-129.
null
Feng X Shi X2019.Effects of different land cover data on WRF simulation in Hainan Island[J].Desert and Oasis Meteorology13(2): 123-129.
null
郭炜, 2015.下垫面效应对数值模拟影响的研究[D].北京: 中国民航大学.Guo W, 2015.The study of the underlying surface effect on numerical simulation[D].Beijing: Civil Aviation University of China.
null
黄良美, 黄海霞, 项东云, 等, 2007.南京市四种下垫面气温日变化规律及城市热岛效应[J].生态环境16(5): 1411-1420.DOI: CNKI: SUN: TRYJ.0.2007-05-016.Huang L M
null
Huang H X Xiang D Y, et al, 2017.The diurnal change of air temperature in four types of land cover and urban heat island effect in Nanjing, China[J].Ecology and Environment16(5): 1411-1420.DOI: CNKI: SUN: TRYJ.0.2007-05-016 .
null
蒋强, 魏林波, 李超, 等, 2023.高低层多尺度系统耦合作用下一次祁连山降水的数值模拟及诊断[J].高原气象42(5): 1298-1310.DOI: 10.7522/j.issn.1000-0534.2022.00096.Jiang Q
null
Wei L B Li C, et al, 2023.Numerical simulation and diagnosis of a precipitation in Qilian Mountains under the coupling of upper and lower systems[J].Plateau Meteorology42(5): 1298-1310.DOI: 10.7522/j.issn.1000-0534.2022.00096 .
null
廖文超, 刘海文, 朱玉祥, 等, 2016.2013年7.18四川暴雨分析[J].大气科学学报39(5): 702-711.DOI: 10.13878/j.cnki.dqkxxb.20150408002.Liao W C
null
Liu H W Zhu Y X, et al, 2016.Analysis of heavy rainfall over Sichuan during 17-18 July 2013[J].Transactions of Atmospheric Sciences39(5): 702-711.DOI: 10.13878 / j.cnki.Dqkxxb.20150408002 .
null
马思敏, 穆建华, 舒志亮, 等, 2022.六盘山区一次典型暴雨过程的地形敏感性模拟试验[J].干旱气象40(3): 457-468.DOI: 10.11755/j.issn.1006-7639.Ma S M
null
Mu J H Shu Z L, et al, 2022.Topography sensitivity simulation test of a typical rainstorm process in Liupan Mountain region[J].Journal of Arid Meteorology, 2022, 40(3): 457-468.DOI: 10.11755/j.issn.1006-7639 .
null
潘小多, 李新, 冉有华, 等, 2012.下垫面对WRF模式模拟黑河流域区域气候精度影响研究[J].高原气象31(3): 657-667.
null
Pan X D Li X Pan Y H2012.Impact of underlying surface information on WRF modeling in Heihe River Basin[J].Plateau Meteorology31(3): 657-667.
null
束艾青, 魏鸣, 武芳, 等, 2021.2019年7月10日四川一次暴雨过程的数值模拟与诊断分析[J].兰州大学学报(自然科学版)57(4): 551-558+568.DOI: 10.13885/j.issn.0455-2059.2021.04.016.Shu A Q
null
Wei M Wu F, et al, 2021.Diagnostic analysis and numerical simulation of a rainstorm in Sichuan Province on July 10, 2019[J].Journal of Lanzhou University (Natural Sciences)57(4): 551-558+568.DOI: 10.13885/j.issn.0455-2059.2021.04.016 .
null
王思懿, 隆霄, 李超, 等, 2022.祁连山夏季两类地形降水过程的环流特征及成因分析[J].高原气象41(3): 593-603.DOI: 10.7522/j.issn.1000-0534.2021.00102.Wang S Y
null
Long X Li C, et al, 2022.Analysis of circulation characteristics and causes on two types of topographic precipitation processes around the Qilian Mountains in summer[J].Plateau Meteorology41(3): 593-603.DOI: 10.7522/j.issn.1000-0534.2021.00102 .
null
叶桂苓, 张宇, 徐建军, 等, 2022.阳江复杂地形对特大暴雨影响机理的数值研究[J].热带气象学报38(1): 133-144.DOI: 10.16032/j.issn.1004-4965.2022.012.Ye G L
null
Zhang Y Xu J J, et al, 2022.A numerical study on the influence mechanism of Yangjiang's complex topography on an extreme rainfall event[J].Journal of Tropical Meteorology38(1): 133-144.DOI: 10.16032/j.issn.1004-4965.2022.012 .
null
昝雨露, 高艳红, 蒋盈沙, 等, 2023.基于不同土地利用产品的华东地区夏季陆气相互作用模拟研究[J].高原气象42(3): 687-700.DOI: 10.7522/j.issn.1000-0534.2023.00019.Zan Y L
null
Gao Y H Jiang Y S, et al, 2023.Simulation of summer land air interactions in east china based on different land use products[J].Plateau Meteorology42(3): 687-700.DOI: 10.7522/j.issn.1000-0534.2023.00019 .
null
张晨炜, 何建军, 赖欣, 等, 2022.精细化下垫面对海南地区气象场模拟的影响[J].高原气象41(3): 775-789.DOI: 10.7522/j.issn.1000-0534.2021.00013.Zhang C W
null
He J J Lai X, et al, 2022.Impacts of high-resolution land surface data on meteorological field simulation over Hainan[J].Plateau Meteorology41(3): 775-789.DOI: 10.7522/j.issn.1000-0534.2021.00013 .
null
张建彬, 高志球, 杨军, 等, 2022.基于WRF模式的博斯腾湖地区暴雨数值模拟研究[J].高原气象41(4): 887-895.DOI: 10.7522/j.issn.1000-0534.2021.00029.Zhang J B
null
Gao Z Q Yang J, et al, 2022.Research and numerical simulation of rainstorm over Bosten Lake area based on WRF Model[J].Plateau Meteorology41(4): 887-895.DOI: 10.7522/j.issn.1000-0534.2021.00029 .
null
张珊, 王宗敏, 黄刚, 等, 2023.基于WRF-LES的崇礼复杂地形局地风场模拟研究[J].高原气象42(1): 197-209.DOI: 10.7522/j.issn.1000-0534.2022.00011.Zhang S
null
Wang Z M Huang G, et al, 2023.Local wind simulation over complex terrain of Chongli using WRF-LES[J].Plateau Meteorology42(1): 197-209.DOI: 10.7522/j.issn.1000-0534.2022.00011 .
null
中国科学院资源环境科学数据中心, 2019.中国土地利用数据(1980-2015)[DB].国家青藏高原科学数据中心(http://data.tpdc.ac.cn)2023年7月1日.Chinese, A.2019.Landuse dataset in China (1980-2015)[DB].National Tibetan Plateau / Third Pole Environment Data Center.(http://data.tpdc.ac.cn),2023-07-01.
null
周春花, 孙彧, 2019.2018年6-7 月四川持续性暴雨的成因分析[J].高原山地气象研究39(1): 6-11.DOI: 10.3969/j.issn.1674-2184.2019.01.002.Zhou C H
null
Sun Y2019.The causation analysis of persistent heavy rain in Sichuan during June-July, 2018[J].Plateau and Mountain Meteorology Research39(1): 6-11.DOI: 10.3969/j.issn.1674-2184.2019.01.002 .
null
周春花, 肖递祥, 郁淑华, 2022.诱发四川盆地极端暴雨的西南涡环流背景和结构特征[J].气象48(12): 1577-1589.DOI: 10.7519/j.issn.1000-0526.2022.081101.Zhou C H
null
Xiao D X Yu S H2022.Circulation background and structural characteristics of the southwest vortex inducing extreme rain-storm in Sichuan Basin[J].Meteorological Monthly48(12): 1577-1589.DOI: 10.7519/j.issn.1000-0526.2022.081101 .
null
周其华, 孙冰, 李志群, 等, 2005.环境保护知识大全[M].吉林: 吉林科学技术出版社, 1.Zhou Q H, Sun B, Li Z Q, et al, 2005.Encyclopedia of environmental protection knowledge[M].Jilin: Jilin Science and Technology Press, 1.
Outlines

/