A Quality Control Method based on Combination Deep Learning for Measurement Data of Complex Mountain Wind Farm

  • Runjin YAO ,
  • Shuaibing CHENG ,
  • Qianqian ZHAO ,
  • Wenlong LI ,
  • Dong QIAN
Expand
  • 1. Design and Research Institute of Jingke Power Technology Co. ,Ltd,Nanjing 210000,Jiangsu,China
    2. School of Aeronautics,Astronautics and Mechanics,Tongji University,Shanghai 200000,China
    3. Jiangsu Key Laboratory of offshore wind power blade design and manufacturing technology,Lianyungang 222006,Jiangsu,China
    4. Jiangxi Branch,China Three Gorges new energy (Group) Co. ,Ltd. ,Nanchang 330038,Jiangxi,China
    5. Carbon neutralization Research Institute,PowerChina Jiangxi Electric Power Construction Co. ,Ltd. ,Nanjing 210044,Jiangsu,China

Received date: 2023-11-07

  Revised date: 2024-03-27

  Online published: 2024-11-12

Abstract

Mountainous winds exhibit strong intermittent, fluctuating, and non-stationary characteristics due to the influence of terrain, resulting in poor observation quality, which makes conventional quality control methods unable to effectively improve their observation quality.To address this issue, a quality control method (VCG) based on variational mode decomposition, convolutional neural networks, and deep learning of gated cyclic units is constructed, and a particle swarm optimization strategy and wind power reconstruction model are introduced to comprehensively improve the quality of observation data.To verify the effectiveness of this method, 10 minute wind speed and direction data of target wind turbines in six complex mountainous wind farms in Jiangxi Ganzhou, Sichuan Guangyuan, Anhui Wuhu, Hubei Huangshi, Henan Pingdingshan, and Guangxi Hezhou in 2016 was quality controlled by VCG and compared with single machine learning method, spatial regression method (SRT), and inverse distance weighting method (IDW).The results indicate that VCG method is suitable for quality control of observed wind data in mountainous wind farms, and has a higher error detection rate for suspicious data compared to conventional methods; The controlled data can better restore the observed background field and have a lower error rate when applied to the power generation evaluation business of wind farms; And it has the characteristics of strong terrain adaptability.

Cite this article

Runjin YAO , Shuaibing CHENG , Qianqian ZHAO , Wenlong LI , Dong QIAN . A Quality Control Method based on Combination Deep Learning for Measurement Data of Complex Mountain Wind Farm[J]. Plateau Meteorology, 2024 , 43(6) : 1630 -1638 . DOI: 10.7522/j.issn.1000-0534.2024.00043

References

null
Cho K Van M B Gulcehre C, et al, 2014.Learning phrase representations using RNN Encoder-Decoder for Statistical Machine Translation[J].Computer Science18(6): 1724-1734.DOI: 10.3115/v1/D14-1179 .
null
Commission I E2019. Ed.4.0 Wind turbines-Part 1: design requirements [S].IEC 61400-1, four edition2019-04.
null
Dragomiretskiy K Zosso D2013.Variational mode decomposition[J].IEEE Transactions on Signal Processing62(3): 531-544.DOI: 10.1109/TSP.2013.2288675 .
null
Eberhart R C Kennedy J1995.A New Optimizer using particle swarm theory[C]//Micro machine and human science.MHS' 95.Proceedings of the Sixth International Symposium on.1995.DOI: 10.1109/MHS.1995.494215 .
null
Fu W Fang P Wang K, et al, 2021.Multi-step ahead short-term wind speed forecasting approach coupling variational mode decomposition, improved beetle antennae search algorithm-based synchronous optimization and volterra series model[J].Renewable Energy, 179(C): 1122-1139.DOI: 10.1016/j.renene. 2021.07.119 .
null
Hubbard K G You J2005.Sensitivity analysis of quality assurance using the spatial regression approach-A case study of the maximum/minimum air temperature[J].Journal of Atmospheric and Oceanic Technology22(10): 1520-1530.DOI: 10.1175/JTECH1790.1 .
null
Lecun Y Bottou L1998.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE86(11): 2278-2324.DOI: 10.1109/5.726791 .
null
Lorenc A C1981.A global three-dimensional multivariate statistical interpolation scheme[J].Monthly Weather Review109(4): 701-721.DOI: 10.1175/1520-0493(1981)109 .
null
Meek D W Hatfield J L1994.Data quality checking for single station meteorological databases[J].Agricultural & Forest Meteorology69(1-2): 85-109.DOI: 10.1016/0168-1923(94)90083-3 .
null
Peng C K Havlin S Stanley H E, et al, 1995.Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series[J].Journal of Nonlintar Science5(1): 82-87.DOI: 10.1063/1.166141 .
null
Pishgar-Komleh S H Keyhani A Sefeedpari P2015.Wind speed and power density analysis based on Weibull and Rayleigh distributions (a case study: Firouzkooh county of Iran)[J].Renewable & Sustainable Energy Reviews, 42: 313-322.DOI: 10. 1016/j.rser.2014.10.028 .
null
Wade C G1987.A quality control program for surface mesometeorological data[J].Journal of Atmospheric & Oceanic Technology4(3): 435-453.DOI: 10.1175/1520-0426(1987)004 .
null
Ye X L Yang X Xiong X, et al, 2017.A quality control method based on an improved random forest algorithm for surface air temperature observations[J].Advances in Meteorology, 2017: 1-15.DOI: 10.1155/2017/8601296 .
null
Zhang Y C Xiong X Zhang Q D2013.An improved self-adaptive PSO algorithm with detection function for multimodal function optimization problems[J].Mathematical Problems in Engineering(pt.17): 657-675.DOI: 10.1155/2013/716952 .
null
陈训来, 刘军, 郑群峰, 等, 2021.基于卷积门控循环单元神经网络的临近预报方法研究[J].高原气象40(2): 411-423.DOI: 10.7522/j.issn.1000-0534.2020.00023.Chen X L
null
Liu J Zheng J F, et al, 2021.Research on proximity prediction method based on convolutional gated recurrent unit neural network[J].Plateau Meteorology40(2): 411-423.DOI: 10.7522/j.issn.1000-0534.2020.00023 .
null
李庆雷, 古丽格娜, 孔婷, 等, 2024.测风塔资料质量控制及效果检验评估[J].沙漠与绿洲气象18(1): 141-148.
null
Li Q L GuLi G L Kong T, et al, 2024.Quality control and effect evaluation of wind tower data in China[J].Desert and Oasis Meteorology18(1): 141-148.
null
李霄, 龙俐, 帅士章, 2014.贵州山区测风数据质量控制方法[J].贵州气象38(4): 32-35.DOI: 10.3969/j.issn.1003-6598.2014.04.008.Li X
null
Long L Shuai S Z2014.Quality control methods for wind measurement data in mountainous areas of Guizhou province[J].Journal of Guizhou Meteorology38(4): 32-35.DOI: 10.3969/j.issn.1003-6598.2014.04.008 .
null
欧阳志远, 史作廷, 石敏俊, 等, 2021."碳达峰碳中和": 挑战与对策[J].河北经贸大学学报42(5): 1-11.
null
OuYang Z Y Shi M J Shi M J, et al, 2021.Challenges and countermeasures of "Carbon Peak and Carbon Neutriality"[J].Journal of Hebei University of Economics and Trade42(5): 1-11.
null
谭晓晴, 罗斯琼, 舒乐乐, 等, 2022.基于机器学习的土壤温度预估研究综述[J].高原气象41(2): 14.DOI: 10.7522/j.issn.1000-0534.2022.00024.Tang X Q
null
Luo S Q Su L L, et al, 2022.A review of soil temperature estimation research based on machine learning[J].Plateau Meteorology41(2): 14.DOI: 10.7522/j.issn.1000-0534.2022.00024 .
null
唐贵基, 王晓龙, 2015.参数优化变分模态分解方法在滚动轴承早期故障诊断中的应用[J].西安交通大学学报49(5): 73-81.DOI: 10.7652/xjtuxb201505012.Tang G J
null
Wang X L2015.Parameter optimized variational mode decomposition method with application to incipient fault diagnosis of rolling bearing[J].Journal of Xi'an Jiaotong University49(5): 73-81.DOI: 10.7652/xjtuxb201505012 .
null
屠其璞, 王俊德, 丁裕国, 等, 1984.气象应用概率统计学[M].北京: 气象出版社, 183-186.Tu Q P, Wang J D, Din Y G, et al, 1984.Probability statistics of meteorology application[M].Beijing: China Meteorological Press: 183-186.
null
夏侯杰, 肖安, 聂道洋, 2023.基于观测的短时强降水深度学习预报模型[J].高原气象42(4): 1005-1017.DOI: 10.7522/j.issn.1000-0534.Xia H J
null
Xiao A Nie Y D2023.Observation based deep learning prediction model for short-term heavy rainfall[J].Plateau Meteorology42(4): 1005-1017.DOI: 10.7522/j.issn.1000-0534 .
null
熊雄, 叶小岭, 张颖超, 等, 2017.基于空间观测差异的地面气温资料质量控制算法研究[J].地球物理学报60(3): 912-923.
null
Xiong X Ye X L Zhang Y C, et al, 2017.A quality control method for surface temperature based on the spatial observation diversity[J].Chinese Journal of Geophysics60(3): 912-923.
null
叶星瑜, 叶小岭, 马伟叁, 等, 2022.基于LMD-TCN的高铁沿线风速观测资料质量控制算法研究[J].铁道科学与工程学报19(4): 849-856.DOI: 10.19713/j.cnki.43-1423/u.T20210363.Ye X Y
null
Ye X L Ma W S, et al, 2022.Research on the quality control method of wind speed observation data along the high-speed railway line based on LMD-TCN[J].Journal of Railway Science and Engineering19(4): 849-856.DOI: 10.19713/j.cnki.43-1423/u.T20210363 .
null
张颖超, 姚润进, 熊雄, 2017.一种基于PSO-MEF的地面气温观测资料的质量控制方法[J].热带气象学报33(2): 8.DOI: 10.16032/j.issn.1004-4965.2017.02.014.Zhang Y C
null
Yao R J Xiong X2017.A PSO-MEF-based method for quality control of surface temperature observations[J].Journal of Tropical Meteorology33(2): 8.DOI: 10.16032/j.issn.1004-4965.2017.02.014 .
Outlines

/