Study on the Spatio-Temporal Changes of Precipitation in Loess Plateau from 1959 to 2018
Received date: 2024-04-26
Revised date: 2024-11-08
Online published: 2024-11-25
Copyright
Precipitation plays a critical role in the Earth's hydrological and energy cycles, significantly influencing the biogeochemical cycles and energy exchanges on the land surface.In the ecologically fragile region of the Loess Plateau, the spatial and temporal variability of precipitation has profound implications for both the ecological environment and socioeconomic development.Therefore, study on the spatial and temporal variations of precipitation in the Loess Plateau holds substantial theoretical and practical significance.This study utilizes daily precipitation data from 115 meteorological stations across the Loess Plateau and its surrounding areas, covering the period from 1959 to 2018.By employing methods such as Inverse Distance Weighting (IDW) interpolation and wavelet analysis, the study provides a comprehensive analysis of the spatial and temporal characteristics of precipitation over the past 60 years in the Loess Plateau.The results showed that: (1) The spatial distribution of precipitation in the Loess Plateau exhibits a clear "stepped" pattern, gradually decreasing from southeast to northwest.This distribution highlights a significant gradient where the southeastern regions receive more precipitation than the northwestern regions, with a similar trend of more rainfall in the south compared to the north.Furthermore, localized topography plays a crucial role in modulating precipitation, with higher elevations generally receiving more rainfall.(2) Under the influence of changes in the East Asian monsoon and atmospheric circulation patterns, the spatial distribution of precipitation from 1989 to 2018 differs significantly from that of 1959 to 1988.Specifically, the 200mm and 400mm isohyets have shifted northward, with a notable decrease in precipitation in the southeastern monsoon-dominated areas, while precipitation has increased in the non-monsoon northwestern areas.The monsoon marginal zone of the Loess Plateau is particularly sensitive to monsoon variability.The continuous weakening of the East Asian summer monsoon has diminished the capacity for moisture transport, further exacerbated by El Niño-Southern Oscillation (ENSO) warm events, both of which have contributed to reduced precipitation in the southeast.Conversely, changes in atmospheric circulation have led to increased precipitation in the northwest, resulting in a slight expansion of the semi-humid regions in the area.(3) Over the study period, precipitation in the Loess Plateau exhibits a fluctuating upward trend, indicative of a general tendency towards increased wetness in the region.This suggests a long-term shift towards more humid conditions, which could have significant implications for the region's ecological restoration and water resource management.(4) The interannual variability of precipitation in the Loess Plateau is characterized by oscillations on multiple time scales, specifically at 5-year, 7-year, 11-year, and 43~45-year intervals, with the 5-year cycle identified as the dominant periodicity.
Yupeng LIU , Jinlong CHAO , Yamin LU , Yaxin WANG , Yuting BI . Study on the Spatio-Temporal Changes of Precipitation in Loess Plateau from 1959 to 2018[J]. Plateau Meteorology, 2025 , 44(3) : 616 -625 . DOI: 10.7522/j.issn.1000-0534.2024.00104
|
|
|
|
范玉洁, 余新晓, 张红霞, 等, 2014.降雨资料Kriging与IDW插值对比分析--以漓江流域为例[J].水文, 34(6): 61-66.
|
顾朝军, 穆兴民, 高鹏, 等, 2017.1961-2014年黄土高原地区降水和气温时间变化特征研究[J].干旱区资源与环境, 31(3): 136-143.DOI: 10.13448/j.cnki.jalre.2017.091.Gu C J ,
|
郝立生, 何丽烨, 马宁, 等, 2023.厄尔尼诺事件年际变化与我国华北夏季干旱的关系[J].干旱气象, 41(6): 829-840.
|
金钊, 2019.走进新时代的黄土高原生态恢复与生态治理[J].地球环境学报, 10(3): 316-322.
|
李崇银, 李桂龙, 1999.北大西洋涛动和北太平洋涛动的演变与20世纪60年代的气候突变[J].科学通报, (16): 1765-1769.Li C Y, Li G L, 1999.The evolution of the North Atlantic Oscillation (NAO) and the North Pacific Oscillation (NPO) and the climate abrupt change in the 1960s[J].Chinese Science Bulletin, (16): 1765-1769.
|
李翔宇, 李曌, 包艳英, 等, 2019.基于反距离加权插值法评价海域水质类别空间分布[J].中国环境监测, 35(6): 70-77.DOI: 10.19316/j.issn.1002-6002.2019.06.10.Li X Y ,
|
李依婵, 李育, 彭思敏, 2020.副热带季风边缘区降水变化及其影响因素[J].兰州大学学报(自然科学版), 56(6): 765-773.
|
李志, 王健, 刘文兆, 2010.泾河流域气候变化及其与ENSO的关系[J].地理科学进展, 29(7): 833-839.
|
刘荔昀, 鲁瑞洁, 丁之勇, 等, 2021.黄土高原气候变化特征及原因分析[J].地球环境学报, 12(6): 615-631.
|
刘世伟, 吴锦奎, 张文春, 等, 2015.基于克里金插值估算区域降水量的抽样方法对比分析——以甘肃省为例[J].冰川冻土, 37(3): 650-657.
|
刘晓清, 赵景波, 于学峰, 2006.黄土高原气候暖干化趋势及适应对策[J].干旱区研究, 23(4): 627-631.DOI: 10.13866/j.azr.2006.04.020.Liu X Q ,
|
刘原峰, 朱国锋, 赵军, 等, 2016.黄土高原区不同降水相态的时空变化[J].地理科学, 36(8): 1227-1233.DOI: 10.13249/j.cnki.sgs.2016.08.014.Liu Y F ,
|
卢爱刚, 2009.半个世纪以来黄土高原降水的时空变化[J].生态环境学报, 18(3): 957-959.DOI: 10.16258/j.cnki.1674-5906. 2009.03.027.Lu A G , 2009.Spatial and temporal precipitation variation on the Loess Plateau in the past half century[J].Ecology and Environmental Sciences, 18(3): 957-959.DOI: 10. 16258/j.cnki.1674-5906.2009.03.027 .
|
马章怀, 王一博, 高泽永, 2024.基于EOF的1951-2020年东亚季风区降水特征及其对夏季风不同配置的响应研究[J].高原 气象, 43(4): 855-867.DOI: 10.7522/j.issn.1000-0534.2023.00098.Ma Z H ,
|
乔春贵, 王国安, 2024.2022年7-8 月黄河中游强降水极端性特征及其形成机制[J].高原气象, 43(4): 919-932.DOI: 10.7522/j.issn.1000-0534.2023.00104.Qiao C G ,
|
曲迎乐, 高晓清, 陈文, 等, 2008.近50 年来我国东、 西部地面气温和降水变化对比的初步分析[J].高原气象, 27(3): 524-529.
|
任婧宇, 彭守璋, 曹扬, 等, 2018.1901-2014年黄土高原区域气候变化时空分布特征[J].自然资源学报, 33(4): 621-633.
|
施雅风, 沈永平, 胡汝骥, 2002.西北气候由暖干向暖湿转型的信号、 影响和前景初步探讨[J].冰川冻土, 24(3): 219-226.
|
田风霞, 赵传燕, 冯兆东, 2009.黄土高原地区降水的空间分布[J].兰州大学学报(自然科学版), 45(5): 1-5.
|
王丹云, 吕世华, 韩博, 等, 2017.近30 年黄土高原春季降水特征与春旱变化的关系[J].高原气象, 36(2): 395-406.
|
王晓琼, 张冬峰, 王大勇, 等, 2024.山西省秋季降水的时空变化特征及成因分析[J].高原气象, 43(5): 1207-1215.
|
肖蓓, 崔步礼, 李东昇, 等, 2017.黄土高原不同气候区降水时空变化特征[J].中国水土保持科学, 15(1): 51-61.DOI: 10.16843/j.sswc.2017.01.007.Xiao B ,
|
延军平, 郑宇, 2001.秦岭南北地区环境变化响应比较研究[J].地理研究, (5): 576-582.
|
晏利斌, 2015.1961-2014年黄土高原气温和降水变化趋势[J].地球环境学报, 6(5): 276-282.
|
杨俊, 徐智, 兰立军, 等, 2022.黄土高原典型小流域降水变化特征研究[J].中国水土保持, 2022(8): 25-28.DOI: 10.14123/j.cnki.swcc.2022.0193.Yang J ,
|
姚静, 李培荣, 肖贻青, 等, 2024.陕南西南涡暴雨的热动力特征分析[J].高原气象, 43(3): 655-666.DOI: 10.7522/j.issn.1000-0534.2023.00074.Yao J ,
|
翟盘茂, 任福民, 张强, 1999.中国降水极值变化趋势检测[J].气象学报, 57(2): 81-89.
|
张志敏, 王勇, 王瑜, 等, 2014.季风边缘区气候变化研究综述[J].科技视界(7): 51-52.DOI: 10.19694/j.cnki.issn2095-2457.2014.07.035.Zhang Z M ,
|
朱姜韬, 杨庆怡, 李旭, 等, 2023.中国西北地区夏季降水及其东部降尺度预测模型[J].高原气象, 42(3): 646-656.
|
左洪超, 吕世华, 胡隐樵, 2004.中国近50年气温及降水量的变化趋势分析[J].高原气象, 23(2): 238-244.
|
/
〈 |
|
〉 |