Simulation Influences of Summer Precipitation by Two Cumulus Parameterization Schemes over Qinghai-Xizang Plateau

  • LUO Xiaoqing ,
  • YANG Meixue ,
  • WANG Xuejia ,
  • WAN Guoning ,
  • CHEN Xiaolei ,
  • LIANG Xiaowen
Expand
  • State Key Laboratory of Cryospheric Sciences Cold and Arid Regions Environmental Engineering Research Institute, Chinese Academy Sciences, Lanzhou 730000, China;2. University of Chinese Academy Sciences, Beijing 100049, China

Received date: 2013-08-21

  Online published: 2014-04-28

Abstract

The regional climate model RegCM4.0 was used to analyze the impacts of Tiedtke cumulus parameterization scheme and Emanuel scheme on summer precipitation simulation over Qinghai-Xizang Plateau, while JRA25 data and NCEP reanalysis data were used as comparison. The experiment indicated that monthly average precipitation has a complex variation, and precipitation over Southern Qinghai-Xizang Plateau is much larger than Northern. Convective precipitation that accounts for a large proportion in total precipitation, has an obvious daily and monthly variation. Although precipitation simulated by Tiedtke scheme is less than Emanuel scheme, it still has a good performance on daily variation of convective precipitation. Precipitation simulation obviously affected by lower troposphere humidity. Topography has a great impact on water vapor and ascending motion simulation, and except for Southeastern Qinghai-Xizang Plateau where strong ascending motion can reach upper troposphere, the scale of vertical movement in other areas is smaller. The center of Qinghai-Xizang Plateau has net income of water vapor, and the reason why Qilian mountain has more precipitation than surrounding areas is that upper air sinks and lower air rises. The study also revealed that cumulus parameterization scheme based on mass flux has some applicability over Qinghai-Xizang Plateau, but Tiedtke scheme needs great modification, especially to modify the smaller scale convective process for improving simulation ability.

Cite this article

LUO Xiaoqing , YANG Meixue , WANG Xuejia , WAN Guoning , CHEN Xiaolei , LIANG Xiaowen . Simulation Influences of Summer Precipitation by Two Cumulus Parameterization Schemes over Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2014 , 33(2) : 313 -322 . DOI: 10.7522/j.issn.1000-0534.2013.00177

References

[1]Arakawa A. The cumulus parameterization problem: Past, present, and future [J]. J Climate, 2004, 17 (13): 2493-2525.
[2]刘屹岷, 刘琨, 吴国雄. 积云对流参数化方案对大气含水量及降水的影响[J]. 大气科学, 2007, 31(6): 1201-1211.
[3]屈鹏, 杨梅学, 郭东林, 等. RegCM3模式对青藏高原夏季气温和降水的模拟[J]. 高原气象, 2009, 28(4): 738-744.
[4]李建云, 王汉杰. RegCM3积云参数化方案对中国南方夏季强降水过程模拟的影响[J]. 气候与环境研究, 2008, 13(2): 149-160.
[5]杨雅薇, 杨梅学. RegCM3在青藏高原地区的应用研究:积云参数化方案的敏感性[J]. 冰川冻土, 2008, 30 (2): 250-258.
[6]王澄海, 余莲. 区域气候模式对不同的积云参数化方案在青藏高原地区气候模拟中的敏感性研究[J]. 大气科学, 2011, 35 (6): 1132-1144.
[7]林文实, 黄美元. 积云参数化研究的现状[J]. 热带气象学报, 1998,14 (4): 374-379.
[8]Grell G A. Prognostic evaluation of assumptions used by cumulus parameterizations [J]. Mon Wea Rev, 1993, 121(3): 764-768.
[9]Christensen C H, Kjellstrom E, Giorgi F, et al. Weight assignment in regional climate models [J]. Climate Res, 2010, 44(2-3): 179-194.
[10]刘琨, 刘屹岷, 吴国雄. SAMIL模式中Tiedtke积云对流方案对热带降水模拟的影响[J]. 大气科学, 2010, 34(1): 163-174.
[11]王鑫, 李跃清, 郁淑华, 等. 青藏高原低涡活动的统计特征[J]. 高原气象, 2009, 28(1): 64-71.
[12]郁淑华, 高文良, 彭骏. 青藏高原低涡活动对降水影响的统计分析[J]. 高原气象, 2012, 31(3): 592-604.
[13]周建玮, 王咏青. 区域气候模式RegCM3应用研究综述[J]. 气象科学, 2007, 27 (6): 702-708.
[14]杨伟愚, 叶笃正, 吴国雄. 夏季青藏高原热力场和环流场的诊断分析III: 环流场稳定维持的物理机制[J]. 大气科学, 1992, 16(4): 409-426.
[15]许习华. 积云对流参数化方案研究的进展[J]. 高原气象, 1991, 10 (1): 105-110.
[16]王晓聪, 包庆, 刘琨, 等. 两种对流参数化方案下降水和潜热加热空间结构的模拟及其影响[J]. 中国科学: 地球科学, 2012, 42 (4): 587-598.
[17]Li L J, Wang B, Wang Y Q, et al. Improvements in climate simulation with modifications to the Tiedtke convective parameterization in the grid-point atmospheric model of IAP LASG(GAMIL)[J]. Adv Atmos Sci, 2007, 24(2): 323-335.
[18]Wang Y Q, Zhou L, Hamilton K. Effect of convective entrainment detrainment on the simulation of the tropical precipitation diurnal cycle[J]. Mon Wea Rev, 2007, 135: 567-594.
[19]Grandpeix J Y, Lafore J P, Cheruy F. A density current parameterization coupled with Emanuel’s convection scheme[J]. Part II: 1D simulations. submitted to the J Atmos Sci, 2009.
[20]Emanuel K A. A scheme for representing cumulus convection in large-scale models[J]. J Atmos Sci, 1991, 48(21): 2313-2335.
[21]Hourdin F, Musat I, Bony S, et al. The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection[J]. Climate Dyn, 2006, 27(7-8): 787-813.
[22]Giorgi F, Coppola E, Solmon F, et al. RegCM4: Model description and preliminary tests over multiple CORDEX domains[J]. Climate Res, 2012, 52: 7-29.
[23]朱涛. RegCM3.0与RegCM4.0对中国区域气候模拟的对比分析[D]. 南京: 南京信息工程大学, 2012: 1-73.
[24]Ozturk T, Altinsoy H, Türkes M, et al. Simulation of temperature and precipitation climatology for the Central Asia CORDEX domain using RegCM4[J]. Climate Res, 2012, 52: 63-76.
[25]Mei R , Wang G L, Gu H H. Summer land atmosphere coupling strength over the United States: Results from the regional climate model RegCM4CLM3.5[J]. J Hydrometeor, 2013, 14: 946-962.
[26]王德立. 积云对流参数化方案诊断和初步改进研究[D]. 北京: 中国气象科学研究院, 2012: 1-78.
[27]Tiedtke M. A comprehensive mass flux scheme for cumulus parameterization in large-scale models[J]. Mon Wea Rev, 1989, 117: 1179-1800.
[28]Bony S, Emanuel K A. A parameterization of the cloudiness associated with cumulus convection: Evaluation using TOGA COARE data[J]. J Atmos Sci, 2001, 58(21): 3158-3183.
[29]Sylla M B, Giorgi F, Stordal F. Large-scale origins of rainfall and temperature bias in high-resolution simulations over southern Africa[J]. Climate Res, 2012, 52: 193-211.
[30]Bao X H, Zhang F Q. Evaluation of NCEP/CFSR, NCEP/NCAR, ERA-Interim, and ERA-40 reanalysis datasets against independent sounding observations over the Tibetan Plateau[J]. J Climate, 2012, 26: 206-214.
[31]李瑞青, 吕世华, 韩博, 等. 青藏高原东部三种再分析资料与地面气温观测资料的对比分析[J]. 高原气象, 2012, 31 (6): 1488-1502.
[32]赵天保, 符淙斌. 几种再分析地表气温资料在中国区域的适用性评估[J]. 高原气象, 2009, 28(3): 594-606.
[33]吕少宁, 文军, 刘蓉. 中国大陆地区不同降水资料的适用性及其应用潜力[J]. 高原气象, 2011, 30(3): 628-640.
[34]张冬峰, 高学杰, 白虎志, 等. RegCM3模式对青藏高原地区气候的模拟[J]. 高原气象, 2005, 24(5): 714-720.
[35]王婉昭, 高艳红, 徐建伟. 青藏高原及其周边干旱区气候变化特征与GLDAS适用性分析[J]. 高原气象, 2013, 32(3): 635-645, doi: 10.7522/j.issn.1000-0534.2013.00054.
[36]李振朝, 韦志刚, 吕世华, 等. CMIP部分模式气温和降水模拟结果在北半球及青藏高原的检验[J]. 高原气象, 2013, 32(4): 921-928, doi: 10.7522/j.issn.1000-0534.2012.00088.
[37]江吉喜, 范梅珠. 夏季青藏高原上的对流云和中尺度对流系统[J]. 大气科学, 2002, 26(2): 263-270.
[38]刘术艳. CWRF在中国东部季风区的应用[D]. 南京: 南京信息工程大学, 2006: 1-70.
[39]Giorgi F, Marinucci M R. An investigation of the sensitivity of simulated precipitation to model resolution and its implications for climate studies[J]. Mon Wea Rev, 1995, 124:148-166.
[40]Giorgi F, Marinucci M R, Bates G T. Development of a Second-Generation Regional Climate Modell(ReyCM2). Part: Convective processes and assimilation of lateral boundary conditions[J]. Mon Wea Rev, 1993, 121: 2814-2832.
[41]尤伟, 臧增亮, 潘晓滨, 等. 夏季青藏高原雷暴天气及其天气学特征的统计分析[J]. 高原气象, 2012, 31(6): 1523-1529.
[42]朱国富, 陈受钧. 1995年夏季青藏高原上及其领域的对流活动[J]. 高原气象, 1999, 18 (1): 9-19.
[43]杨伟愚, 叶笃正, 吴国雄. 夏季青藏高原热力场和环流场的诊断分析II: 环流场的主要特征及其大型垂直环流场[J]. 大气科学, 1992, 16(3): 287-301.
Outlines

/