Simulation and Improvement of Soil Temperature and Moisture at Zoige Station in Source Region of the Yellow River during Freezing and Thawing

  • CHEN Boli ,
  • LUO Siqiong ,
  • Lü Shihua ,
  • ZHANG Yu
Expand
  • Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Cold and Arid Regions Environment Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China;2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2012-11-07

  Online published: 2014-04-28

Abstract

Using observational data from Zoige Station in the source region of the Yellow River, the model CLM3.5 was employed to do a single point simulation. Comparison of the observed and simulated values of soil temperature and moisture verifies the applicability of the model in the seasonal frozen soil area of the source region of the Yellow River. The simulated soil temperature is better during the non-freeze period, though the values are much higher at the deep layer than the observation. But a bias occurs during the freezing period. The simulated temperature is lower and the simulated freezing depth is deeper than the observation. The simulation of soil moisture indicates the start time of freeze and thaw is ahead of time. The thermal conductivity of soil matrix in the model is too large may be the main reason for the deviation. So the sensitive experiment which replaces the original parameterization scheme with the Johansen scheme was done. The new simulated result shows the significant improvement to the original. It matches the observation more closely in the freezing depth and the start time of freeze and thaw. The phenomenon which the simulated temperature is lower than the observation during the freezing period is also improved to some extent.

Cite this article

CHEN Boli , LUO Siqiong , Lü Shihua , ZHANG Yu . Simulation and Improvement of Soil Temperature and Moisture at Zoige Station in Source Region of the Yellow River during Freezing and Thawing[J]. Plateau Meteorology, 2014 , 33(2) : 337 -345 . DOI: 10.7522/j.issn.1000-0534.2013.00085

References

[1]文军, 蓝永超, 苏中波, 等. 黄河源区陆面过程观测和模拟研究进展[J]. 地球科学进展, 2011, 26(6): 575-585.
[2]罗栋梁, 金会军, 林琳, 等. 黄河源区多年冻土温度及厚度研究新进展[J]. 地理科学, 2012, 32(7): 898-904.
[3]张森琦, 王永贵, 赵永真, 等. 黄河源区多年冻土退化及其环境反映[J]. 冰川冻土, 2004, 26(1): 1-6.
[4]张博, 秦其明, 孙永军, 等. 扎陵湖鄂陵湖近三十年变化的遥感监测与分析[J]. 测绘科学, 2010, 35(4): 54-56.
[5]康悦, 李振朝, 田辉, 等. 黄河源区植被变化趋势及其对气候变化的响应过程研究[J]. 气候与环境研究, 2011, 16(4): 505-512.
[6]陈渤黎, 吕世华, 罗斯琼. CLM3.5模式对青藏高原玛曲站陆面过程的数值模拟研究[J]. 高原气象, 2012, 31(6): 1511-1522.
[7]夏坤, 罗勇, 李伟平. 青藏高原东北部土壤冻融过程的数值模拟[J]. 科学通报, 2011, 56(22): 1828-1838.
[8]李燕, 刘新, 李伟平. 青藏高原地区不同下垫面陆面过程的数值模拟研究[J]. 高原气象, 2012, 31(3): 581-591.
[9]罗斯琼, 吕世华, 张宇, 等. CoLM模式对青藏高原中部BJ站陆面过程的数值模拟[J]. 高原气象, 2008, 27(2): 259-271.
[10]罗斯琼, 吕世华, 张宇, 等. 青藏高原中部土壤热传导率参数化方案的确立及在数值模式中的应用[J]. 地球物理学报, 2009, 52(4): 919-928.
[11]Niu G Y, Yang Z L. Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale[J]. J Hydrometeor, 2006, 7(5): 937-952.
[12]王澄海, 董文杰, 韦志刚. 陆面模式中土壤冻融过程参数化研究进展[J]. 地球科学进展, 2002, 17(1): 44-52.
[13]Penner E. Thermal conductivity of frozen soils[J]. Canadian Journal of Earth Sciences, 1970, 7(3): 982-987.
[14]Chen S X. Thermal conductivity of sands[J]. Heat and Mass Transfer, 2008, 44(10): 1241-1246.
[15]Farouki O T. Thermal properties of soils[R]. DTIC Document, 1981.
[16]Abu-Hamdeh N H. Thermal properties of soils as affected by density and water content[J]. Biosystems Engineering, 2003, 86(1): 97-102.
[17]王少影, 张宇, 吕世华, 等. 玛曲高寒草甸地表辐射与能量收支的季节变化[J]. 高原气象, 2012, 31(3): 605-614.
[18]Luo S, Lü S, Zhang Y. Development and validation of the frozen soil parameterization scheme in Common Land Model[J]. Cold Regions Science and Technology, 2009, 55(1): 130-140.
[19]Johansen O. Thermal conductivity of soils[R]. DTIC Document, 1977.
[20]C?té J, Konrad J M. Thermal conductivity of base-course materials[J]. Canadian Geotechnical Journal, 2005, 42(1): 61-78.
[21]Gong Y, Horton R, Lu S, et al. An improved model for predicting soil thermal conductivity from water content at room temperature[J]. Soil Science Society of America Journal, 2007, 71(1): 8-14.
[22]C?té J, Konrad J M. A generalized thermal conductivity model for soils and construction materials[J]. Canadian Geotechnical Journal, 2005, 42(2): 443-458.
Outlines

/