Please wait a minute...
高级检索
高原气象
论文     
2010年3月5日闽北经典超级单体风暴天气过程分析
1. 福建省建阳气象雷达站, 福建 建阳354200; 2. 福建省南平市气象局, 福建 南平353000;
3. 福建省龙岩市气象局, 福建 龙岩364000
Analysis on Weather Process of Classic Supercell Storm
in Northern Part of Fujian on 5 March 2010
 全文: PDF(3054 KB)  
摘要:

2010年3月5日16:20(北京时, 下同)-19:50发生在闽北的强对流天气主要由中尺度对流回波群中的3个局地强风暴引起的, 其中最强的单体是一典型的经典超级单体风暴, 它在沿途220 km产生了强降雹。本文利用建阳多普勒天气雷达(CINRAD/SA)资料和常规高空地面观测资料, 分析了该单体的演变特征和环境条件。结果表明: (1)经典超级单体出现在具有地形锢囚特征的地面中低压内, 该低压则处于高空槽前、 西南中空急流下方、 850 hPa锋区切变南侧以及低空急流前方; 该单体在地面中低压西部冷锋上生成后沿着地面辐合线移动并穿过低压中心, 到达低压东部的静止锋冷区后减弱, 生命史为4 h 52 min, 并始终维持相对的孤立状态, 平均移速为75 km·h-1, 属于高质心对流系统。(2)成熟阶段(15:57-18:47), 该单体维持中等强度以上的中气旋及相关的有界弱回波区 (BWER)、 低层钩状回波等经典超级单体特征, 并出现了3次高峰, 相应的中气旋在高峰期均有增强并向地面伸展。其中, 在第二次高峰期出现了垂悬回波下降和钩状回波更新以及BWER消失现象, 这一期间出现的龙卷涡旋特征进一步表明产生龙卷的可能性很大; 在第三次高峰期也出现了类似演变特征, 但更为典型的是中气旋最终发生了锢囚, 形成长达30 min的涡旋状回波。此外, 在第一和第二次高峰期风暴左前方多次出现了阵风锋回波, 而右后侧却未出现此现象, 这也是一种有利于风暴维持的特征。(3)主要的风暴尺度环境特征是中等大小的对流有效位能\, 大的深层垂直风切变(0~6 km风切变是39 m·s-1)、  强的相对风暴入流(17 m·s-1, 0~2 km)和高的相对风暴螺旋度(418 m2·s-2, 0~2 km); 与典型的经典超级单体风暴环境不同的是: 风随高度顺转(90°, 300 hPa以下)不仅表现在低层还表现在中上层(25°, 500~300 hPa)。最后对风暴成熟阶段的3次高峰机理进行了讨论。

关键词:  经典超级单体风暴中气旋垂直风切变涡旋状回波阵风锋回波龙卷涡旋特征(TVS)    
Abstract:

A severe convective weather occurred in northern Fujian from 16:20 to 19:50 on 5 March 2010 was mainly caused by three local severe storms in mesoscale convective echo group. The strongest cell of three local server stroms was a classic(CL) supercell storm,  which produced sever hail in 220 km along the way. Using  radar data of Jianyang CINRAD/SA, routine upper-air and surface observation data, the CL supercell's evolving feature and environmental conditions were analyzed. The main results are as follows: (1)The storm appeared in a mesoscale low pressure which had the characteristic of the terrain occlusion in surface. The low pressure was in the front of the upper-troposphere trough, under the southwest middle-level jet, on the south side of shear-line and  frontal zone on 850 hPa and in the front of low-level jet; the storm was produced from the cold front which located on the west of the low pressure, then the storm moved along the concentrated line in surface and passed through the center of the low pressure, at last the storm reached cold zone of stationary front which located on the east of the low pressure and quickly weakened then. The storm always maintained the relative isolated state and life-history was 4 h 52 min, the storm's average speed was 75 km·h-1 and the storm was a high centroid convective system. (2) During the mature stage (15:57-18:47) the storm maintained the classic supercell characteristics of the moderate intensity or more mesocyclone, the correlative bounded weak echo regions (BWER), lower-level hook-echo and other features. Moreover it come through three times peak development (16:03-16:34, 16:52-17:17, 17:41-18:47, respectively); correspondingly, the mesocyclone of the storm enhanced and stretched to the ground in the peak period. In the second peak period, the storm appeared the phenomenon of declining of echo-overhang, updating lower level hook-echo and disappearing of BWER, these evolving features were in accordance with the model of tornado-arising supercell. Moreover, in the second peak period the characteristic of the TVS further indicated the produced possibility of tornad to be large. In the third peak period the storm came up the similar evolving feature but the more typical is the mesocyclone came to occlusion at last, and then the storm formed vortex-echo which lasted half hour. Besides, in the first and the second peak period the gust-front-echo appeared in the left front of the storm several times rather than right-backward, which was favorable for lasting of the storm. (3) The main characteristics of storm-scale environment were the medium CAPE (Convective Available Potential Energy, 1 685 J·kg-1) , significant vertical wind shear (39 m·s-1 , over 0~6 km) , strong storm-relative inflow velocity (17 m·s-1, over 0~2 km) and strong storm-relative helicity (418 m2·s-2, over 0~2 km). However, Wind direction veered with altitude (90 °, below 300 hPa) was not only on low-level but also on middle-upper-level (25 °, over 500~300 hPa), which was certain different to those of CL supercell previously observed in middle latitudes. At lest, the mechanisms of three times peak development of the storm in the mature stage was also discussed.

Key words: Classic Supercell    Mesocyclone    Vertical Wind Shear    Vortex-echo    Gust-front-echo    TVS
出版日期: 2013-03-02
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
吴木贵1
张信华2
傅伟辉1
赖荣钦1
冯晋勤3

引用本文:

吴木贵1,张信华2,傅伟辉1,赖荣钦1,冯晋勤3. 2010年3月5日闽北经典超级单体风暴天气过程分析[J]. 高原气象, 10.7522/j.issn.1000-0534.2012.00025.

链接本文:

http://www.gyqx.ac.cn/CN/Y2013/V32/I1/250

[1]Browning K A, Donaldson R J. Airflow and structure of a tornadic storm[J]. J Atmos Sci, 1963, 20: 533-545.

[2]Browning K A. Airflow and precipitation trajectories with in severe local storms which travel to the right of the winds[J]. J Atmos Sci, 1964, 21: 634-639.

[3]Donaldson R J Jr. Vortex signature recognition by a Doppler radar[J]. J Appl Meteor, 1970, 9: 661-670.

[4]Browning K A. The structure and mechanisms of hailstorms[J]. Amer Meteor Soc Monog, 1978, 38: 1-36.

[5]Moller A R, Doswell C A III, Foster M P, et al. The operational recognition of supercell thunderstorm environments and storm structures[J]. Wea Forecasting, 1994, 9: 327-347.

[6]Lemon R L, Doswell C A. Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis[J]. Mon Wea Rev, 1979, 107(9): 1184-1197.

[7]Klemp J B. Dynamics of tornadic thunderstorms[J]. Ann Rev Fluid Mech, 1987, 19: 369-402.

[8]Fujita T T. Tornadoes and downbursts in the context of generalized planetary scales[J]. J Atmos Sci, 1981, 38: 1511-1534.

[9]俞小鼎, 郑媛媛, 张爱民,等. 安徽一次强烈龙卷的多普勒天气雷达分析[J].高原气象, 2006, 25(5): 914-924.

[10] 付双喜, 王致君, 张杰, 等. 甘肃中部一次强对流天气的多普勒雷达特征分析[J]. 高原气象, 2006, 25(5): 933-941.

[11] 罗慧, 刘勇, 冯桂力, 等. 陕西中部一次超强雷暴天气的中尺度特征及成因分析[J]. 高原气象, 2009, 28 (4): 816-826.

[12] 王秀明, 钟青, 韩慎友. 一次冰雹天气强对流(雹) 云演变及超级单体结构的个例模拟研究[J]. 高原气象, 2009, 28(2): 352-365.

[13] 刁秀广, 杨晓霞, 朱君鉴, 等. 一次长寿命风暴的CINRAD/SA 雷达反射率及中气旋产品特征与流场结构分析[J]. 高原气象, 2008,  27(3): 657-667.

[14] 刁秀广, 朱君鉴. 三次超级单体风暴雷达产品特征及气流结构差异性分析[J]. 气象学报, 2009, 67(1): 133-146.

[15] 廖向花, 周毓荃, 唐余学, 等. 重庆一次超级单体风暴的综合分析[J]. 高原气象, 2010, 29(6): 1556-1564.

[16] 井喜, 井宇, 李明娟, 等. 毛乌素沙漠东部边缘一次雹暴三维结构的观测分析[J].高原气象, 2008, 27(5): 1119-1130.

[17] 王振会, 纪雷, 黄兴友, 等. 机载W波段测云雷达回波强度衰减订正仿真研究[J]. 高原气象, 2011, 30(2): 437-444.

[18] 张雯雯, 刘黎平, 阮征, 等. 风廓线雷达回波参量估计算法验证及其地杂波抑制方法研究[J]. 高原气象, 2011, 30(4): 1096-1101.

[19] 赵俊荣, 郭金强, 杨景辉, 等. 一次致灾冰雹的超级单体风暴雷达回波特征分析[J]. 高原气象, 2011, 30(6): 1681-1689.

[20] 王福侠, 裴宇杰, 杨晓亮, 等. \!090723\"强降水超级单体风暴特征及强风原因分析[J]. 高原气象, 2011, 30(6): 1690-1700.

[21] 冯晋勤, 俞小鼎, 傅伟辉, 等. 2010年福建一次早春强降雹超级单体风暴对比分析[J]. 高原气象,  2012, 31(1): 239-250.

[22] 俞小鼎, 姚秀萍, 熊廷南, 等. 多普勒天气雷达原理与业务应用[M].北京: 气象出版社, 2006: 90-155, 163-167, 188-216.

[23] 郑媛媛, 俞小鼎, 方翀, 等. 一次典型超级单体风暴的多普勒天气雷达观测资料分析[J]. 气象学报, 2004, 62(3): 317-328.

[24] 朱君鉴, 刁秀广, 黄秀韶. 一次冰雹风暴的CINRAD/ SA 产品分析[J]. 应用气象学报, 2004, 15: 579-589.

[25] 丁一汇. 高等天气学[M]. 北京: 气象出版社, 1991: 415-420, 516-523.

[26] Kung E C, Tsui T L. Subsynoptic-scale kinetic energy balance in the storm area[J]. J Atmos Sci, 1975, 32: 729-740.

[27] 叶榕生.福建重要天气分析和预报[M].北京: 气象出版社, 1989: 43-46.

[28] 朱乾根, 林锦瑞, 寿绍文, 等.天气学原理与方法(第三版)[M].北京: 气象出版社, 1992: 236-237.

[29] 陆汉城. 中尺度天气原理和预报[M]. 北京: 气象出版社, 2002: 51-67, 103-130, 252-261.

[30] 刘健文, 郭虎, 李耀东, 等. 天气分析物理量计算基础[M].北京: 气象出版社, 2005: 127-132.

[31] 郭媚媚, 麦冠华, 胡胜, 等. 肇庆市一次超级单体的多普勒雷达资料分析[J].气象, 2006, 32(6): 97-101.

[32] Fujita T T. Proposed mechanism of tornado formation from rotating thunderstorm[C]. 8th Conf on Severe Local Storms, American Meteor Sor, 1973: 191-196.

[33] Doswell C A. Severe convective storms: An overview[J]. Meteor Monogr, 2001, 50: 1-26.

[34] Trapp R J. A reassessment of the percentage of tornadic mesocyclones[J]. Wea Forecasting, 2005, 20: 680-687.

[35] 俞小鼎, 郑媛媛, 廖玉芳, 等. 一次伴随强烈龙卷的强降水超级单体风暴研究[J]. 大气科学, 2008, 32(3): 508-521.

[36] Klemp J B, Rotunno R. A study of the tornadic region within a supercell thunderstorms[J]. J Atmos Sci, 1983, 40: 359-377.

[37] Rotunno R,  Klemp J B. On the rotation and propagation of simulated supercell thunderstorms[J]. J Atmos Sci, 1985, 42: 271-292.

[1] 张桂莲, 常欣, 黄晓璐, 訾耀海, 李瑞青, 梁凤娟. 东北冷涡背景下超级单体风暴环境条件与雷达回波特征[J]. 高原气象, 2018, 37(5): 1364-1374.
[2] 陈贵川, 吴钲, 谌芸, 李强, 朱岩. 中低层增温对强降水中涡旋形成的敏感性研究[J]. 高原气象, 2016, 35(6): 1498-1511.
[3] 徐晨, 陈海山, 黄菱芳. 冬季欧亚中高纬陆面热力异常与同期大气环流的联系[J]. 高原气象, 2015, 34(6): 1584-1592.
[4] 张琳娜, 郭锐, 何娜, 贺赟, 吴剑坤. “7·21”北京特大暴雨过程龙卷形成可能性探究[J]. 高原气象, 2015, 34(4): 1074-1083.
[5] 周芯玉, 廖菲, 孙广凤. 广州两次暴雨期间风廓线雷达观测的低空风场特征[J]. , 2015, 34(2): 526-533.
[6] 黎惠金1,李向红2,黄芳3,李江南4,覃昌柳1. 广西一次特大暴雨的MCC演变
过程及结构特征分析
[J]. 高原气象, 2013, 32(3): 806-817.
[7] 白涛1-2,李崇银1, 3,王铁1,谭言科1,李刚1. 干侵入对陕西“2008.07.21”暴雨过程的影响分析[J]. 高原气象, 2013, 32(2): 345-.
[8] 吴莹1-2,WENG Fuzhong3,王振会1-2,YAN Banghua4. 沙漠地区微波地表发射率和土壤质地关系分析[J]. 高原气象, 2013, 32(2): 481-.
[9] 张腾飞1,张杰2,尹丽云1. 云南一次秋季雷暴过程的闪电特征及形成条件分析[J]. 高原气象, 2013, 32(1): 268-277.
[10] 卓嘎1-2,边巴次仁3,杨秀海2,罗布1. 近30年西藏地区大气可降水量的时空变化特征[J]. 高原气象, 2013, 32(1): 23-30.
[11] 陈伯龙1-2,高晓清1*,左洪超2,汪宁渤3,刘磊1. 大型风电场群风电场布局间距的模型研究[J]. 高原气象, 2012, 31(6): 1746-1752.
[12] 陈渤黎1-2,吕世华1,罗斯琼1. CLM3.5模式对青藏高原玛曲站陆面过程的数值模拟研究[J]. 高原气象, 2012, 31(6): 1511-1522.
[13] 姚叶青1-3,郝莹3,张义军4,李劲3,刘高平3,邱学兴3,余金龙3,刘远永3. 安徽龙卷发生的环境条件和临近预警[J]. 高原气象, 2012, 31(6): 1721-1730.
[14] 王彦辉, 张广庶, 张彤, 李亚珺, 范祥鹏, 武斌. 闪电VHF辐射源三维定位系统仪器误差处理[J]. 高原气象, 2012, 31(5): 1407-.
[15] 苏爱芳, 银燕, 蔡淼. 夏末华北低槽尾部雹云的生成环境和结构特征[J]. 高原气象, 2012, 31(5): 1376-.
img

QQ群聊

img

官方微信