Please wait a minute...
高级检索
高原气象  2014, Vol. 33 Issue (2): 452-459    DOI: 10.7522/j.issn.1000-0534.2013.00013
论文     
唐古拉山区Geonor T—200B雨雪量计日降水观测误差修正
赵求东1,2, 叶柏生2, 何晓波1, 张健2, 赵传成1
1. 中国科学院寒区旱区环境与工程研究所 寒旱区水文与水土资源研究室, 兰州 730000;
2. 中国科学院寒区旱区环境与工程研究所 冰冻圈科学国家重点实验室, 兰州 730000
Bias Correction of Daily Precipitation Measured by Geonor T-200B Precipitation Gauge in Tanggula Mountain
ZHAO Qiudong1,2, YE Baisheng2, HE Xiaobo1, ZHANG Jian2, ZHAO Chuancheng1
1. Division of Hydrology and Water-Land Resource in Cold and Arid Regions, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China;
2. State Key Laboratory of Cryospheric Science, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
 全文: PDF(2160 KB)  
摘要:

降水观测资料的准确性对气候、气象及水文研究至关重要,因此20052011年在青藏高原唐古拉山中段开展了中国标准雨量计(CSPG)和Geonor T-200B自动雨雪量计(下称T-200B)的降水对比观测试验,以CSPG人工观测的日降水修正值作为真实的日降水量,通过数学统计分析,提出T-200B的固态、液态及混合态日降水修正公式,并对其进行验证。结果表明,T-200B日降水观测值经过修正后,与CSPG日降水修正值基本相符,试验时段三种降水类型的降水总量的T-200B修正值与CSPG修正之间的平均相对误差为2.3%,平均绝对误差为13.7 mm,该修正方案提高了T-200B降水观测效率,修正精度能够满足实际应用需求。

关键词: 唐古拉山区T-200BCSPG降水误差修正    
Abstract:

Accurate measurement of precipitation is crucial to meteorology, climate and hydrology research. A comparative precipitation observation of Chinese Standard Precipitation Gauge (CSPG) and the Geonor T-200B Gauge (T-200B) were conducted during 2005-2011 in the middle of Tanggula Mountain, Qinghai-Xizang Plateau. The CSPG was calibrated to the observed daily precipitation by the developed standard equations. A bias correction method of precipitation for three precipitation patterns was developed and validated for T-200B Gauge. The results show that the adjusted value of T-200B is in accord with that of CSPG, the mean relative error between the adjusted accumulative precipitation of Geonor T-200B and that of CSPG is 2.3%, and the mean absolute error is 13.7 mm during observed period. The bias correction method improves the observation efficiency of T-200B significantly, and the accuracy can be enough for the practical application.

Key words: Tanggula Mountain    T-200B    CSPG    Precipitation    Bias correction
收稿日期: 2012-06-19 出版日期: 2014-04-24
:  P412.13  
基金资助:

国家重大科学研究计划项目(2013CBA01806);国家自然科学基金项目(41201025,41030527,41130638,41130641);中国科学院寒区旱区环境与工程研究所青年人才基金项目(51Y251A61)

通讯作者: 何晓波. E-mail:hxb@lzb.ac.cn     E-mail: hxb@lzb.ac.cn
作者简介: 赵求东(1983-),男,安徽桐城人,助理研究员,主要从事寒旱区水文水资源研究. E-mail:dsslab@163.com
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
赵求东
叶柏生
何晓波
张健
赵传成

引用本文:

赵求东, 叶柏生, 何晓波, 张健, 赵传成. 唐古拉山区Geonor T—200B雨雪量计日降水观测误差修正[J]. 高原气象, 2014, 33(2): 452-459.

ZHAO Qiudong, YE Baisheng, HE Xiaobo, ZHANG Jian, ZHAO Chuancheng. Bias Correction of Daily Precipitation Measured by Geonor T-200B Precipitation Gauge in Tanggula Mountain. PLATEAU METEOROLOGY, 2014, 33(2): 452-459.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2013.00013        http://www.gyqx.ac.cn/CN/Y2014/V33/I2/452

[1] 吕少宁, 文军, 刘蓉. 中国大陆地区不同降水资料的适用性及其应用潜力[J]. 高原气象, 2011, 30(3):628-640.

[2] 熊秋芬, 黄玫, 熊敏诠, 等. 基于国家气象观测站逐日降水格点数据的交叉检验误差分析[J]. 高原气象, 2011, 30(6):1615-1625.

[3] Korzun. World Water Balance and Water Resources of the Earth (Studies & Reports in Hydrology)[M]. Paris: UNESCO, 1978: 1-663.

[4] Legates D R. Global and terrestrial precipitation: A comparative assessment of existing climatologies[J]. Int J Climatol, 1995, 15: 237-258.

[5] Walsh J E, Kattsov V, Portis D, et al. Arctic precipitation and evaporation: model results and observational estimates[J]. J Climate, 1998, 11(1): 72-87.

[6] Yang D, Ye B, Shiklomanov A. Discharge characteristics and changes over the Ob River watershed in Siberia[J]. J Hydrometeor, 2004, 5: 69-84.

[7] 叶柏生, 成鹏, 杨大庆, 等. 降水观测误差修正对降水变化趋势的影响[J]. 冰川冻土, 2008, 30(5): 717-725.

[8] Tian X, Dai A, Yang D, et al. Effects of precipitation-bias corrections on surface hydrology over northern latitudes[J]. J Geophys Res, 2007, 112(D14101): 1-10.

[9] 王敏, 周才平, 吴良, 等. 遥感估算降水在西藏高原中的应用研究[J]. 高原气象, 2012, 31(5): 1215-1224.

[10] Walsh J E, Kattsov V, Portis D, et al. Arctic precipitation and evaporation: Model results and observational estimates[J]. J Climate, 1998, 11: 72-87.

[11] Vrsmarty C J, Hinzman L D, Peterson B J, et al. The hydrologic cycle and its role in Arctic and global environmental change: A rationale and strategy for synthesis study[R]. Fairbanks, Alaska: Arctic Research Consortium of the U S, 2001: 1-84.

[12] Goodison B E, Louie P Y T, Yang D. WMO solid precipitation measurement intercomparison: Final Report[R]. WMO/TD-No. 872, WMO, Geneva, 1998: 1-212.

[13] 杨大庆. 天山乌鲁木齐河流域降水观测系统误差分析与修正[D]. 兰州:中国科学院兰州冰川冻土研究所, 1988:1-150.

[14] Yang D, Shi Y, Kang E, et al. Results of solid precipitation measurement intercomparison in the alpine area of Urumqi River Basin[J]. Chinese Sci Bull, 1991, 36(13): 1105-1109.

[15] Goodison B E, Metcalfe J R. The WMO solid precipitation intercomparison: Canadian assessment[R]. WMO/TD No.462. WMO, Geneva, 1992: 221-225.

[16] Yang D, Goodison B E, Metcalfe J R, et al. Accuracy of NWS 8-inch standard non-recording precipitation gauge: result of WMO Intercomparison[J]. J Atmos Oceanic Technol, 1998, 15(2): 54-68.

[17] Yang D, Goodison B E, Metcalfe J R, et al. Accuracy of Tretyakov precipitation gauge: Results of WMO intercomparison[J]. Hydrological Processes, 1995, 9(8): 877-895.

[18] Gunther T H. German participation in the WMO solid precipitation intercomparison: final results[C]//Sevruk B, Lapin M, eds. Proceedings of the international symposium on precipitation and evaporation. Bratislava: IAHS publication, 1998: 93-102.

[19] Allerup P, Madsen H, Veijen F. A comprehensive model for correcting point precipitation[J]. Nordic Hydrology, 1997, 28: 1-20

[20] Yang D, Elomaa E, Tuominen A, et al. Wind-induced precipitation undercatch of the Hellmann gauges[J]. Nordic Hydrology, 1999, 30: 57-80

[21] Yang D, Kane D, Zhang Z. Bias corrections of long-term (19732004) daily precipitation data over the northern regions[J]. Geophys Res Lett, 2005, 32(L19501): 1-5.

[22] Metcalfe J R, Ishida S, Goodison B E. A corrected precipitation archive for the Northwest Territories[C]// Cohen S, editor. Proceedings of Sixth Biennial AES/DIAND Meeting on Northern Climate. Yellowknife: Environment Canada, 1994: 110-117.

[23] Yang D, Goodison B E, Benson C, et al. Adjustment of daily precipitation at 10 climate stations in Alaska: application of WMO intercomparison results[J]. Water Resources Research, 1998, 34(2): 241-256

[24] Yang D, Ishida S, Goodison B E, et al. Bias correction of daily precipitation measurements for Greenland[J]. J Geophys Res, 1999, 105(D6): 6171-6182.

[25] Yang D. An improved precipitation climatology for the Arctic Ocean[J]. Geophys Res Lett, 1999, 26 (11): 1625-1628.

[26] Legates D R, Willmott C J. Mean seasonal and spatial variability in gauge-corrected, global precipitation[J]. Int J Climatol, 1990, 10: 111-127.

[27] Ye B, Yang D, Ding Y, et al. A bias-corrected precipitation climatology for China[J]. J Hydrometeor, 2004, 5: 1147-1160.

[28] 叶柏生, 杨大庆, 丁永建, 等. 中国降水观测误差分析及其修正[J]. 地理学报, 2007, 162(1):3-13.

[29] Smith C D. Correcting the wind bias in snowfall measurements made with a Geonor T-200B precipitation gauge and Alter wind shield[J]. Canadian Meteorological and Oceanographic Society, 2007, 36(5): 162-167.

[30] Fortin V, Therrien C, Anctil F. Correcting wind-induced bias in solid precipitation measurements in case of limited and uncertain data[J]. Hydrological Processes, 2008, 22: 3393-3402.

[31] MacDonald J, Pomeroy J W. Gauge undercatch of two common snowfall gauges in a prairie environment[C]//Proceedings of the 64th Eastern Snow Conference. St. John's, Newfoundland, Canada, 2007: 119-126.

[32] Smith C D. The relationship between snowfall catch efficiency and wind speed for the Geonor T-200B precipitation gauge utilizing various wind shield configurations[C]//Proceedings of 77th Western Snow Conference. Canmore AB, 2009: 115-121.

[33] 何晓波, 叶柏生, 丁永建. 青藏高原唐古拉山区降水观测误差修正分析[J]. 水科学进展, 2009, 20(3):403-408.

[34] 赵拥华, 赵林, 杜二计, 等. 唐古拉地区高寒草甸生态系统CO2通量特征研究[J]. 高原气象, 2011, 30(2):525-531.

[35] 张文煜, 张宇, 陆晓静, 等. 黄土高原半干旱区非均一下垫面粗糙度分析[J]. 高原气象, 2009, 28(4):763-768.

[36] Emeis S, Turk M. Comparison of logarithmic wind profiles and power law wind profiles and their applicability for offshore wind profiles[J]. Wind Energy, 2007: 61-64.

[37] Stull R. Meteorology for scientists and engineers[M]. California: Brooks/Cole, 2000: 502-503.

[38] Bourgouin P. A method to determine precipitation types[J]. Wea Forecasting, 2000, 15: 583-592.

[39] Wagner J A. Mean temperature from 1000 mb to 500 mb as a predictor of precipitation type[J]. Bull Amer Meteor Soc, 1957, 38: 584-590.

[40] Bocchieri J R. The objective use of upper air sounding to specify precipitation type[J]. Mon Wea Rev, 1980, 108: 596-603.

[41] Czys R R, Scott R W, Tang K C, et al. A physically based, nondimensional parameter for discriminating between locations of freezing rain and ice pellets[J]. Wea Forecasting, 1996, 11: 591-598.

[42] Upadhyay D S. Cold climate hydrometeorology[M]. New York: John Wiley & Sons Inc, 1995: 105-111.

[43] Fassnacht S R, Kouwen N, Soulis E D. Surface temperature adjustments to improve weather radar representation of multi-temporal winter precipitation accumulations[J]. J Hydrol, 2001, 253(1-4): 148-168.

[44] Fassnacht S R. Estimating Alter-shielded gauge snowfall undercatch, snowpack sublimation, and blowing snow transport at six sites in the coterminous USA[J]. Hydrological Processes, 2004, 18: 3481-3492.

[45] Yang D, Goodson B E, Metcalfe J R. Accuracy of NWS 800 standard Nonrecording precipitation gauge: Results and application of WMO intercomparison[J]. J Atmos Oceanic Technol, 1998, 15: 54-68.

[1] 池再香, 胡跃文, 夏阳, 胡祖恒, 杜正静, 严锐. 云贵高原东部两次典型气象干旱年汛期环流特征对比[J]. 高原气象, 2019, 38(3): 528-538.
[2] 朱丽, 刘蓉, 王欣, 王作亮, 文军, 赵阳, 谢琰, 张堂堂. 基于FLEXPART模式对黄河源区盛夏降水异常的水汽源地及输送特征研究[J]. 高原气象, 2019, 38(3): 484-496.
[3] 王梦晓, 王瑞, 傅云飞. 利用TRMM PR和IGRA探测分析的拉萨降水云内大气温湿廓线特征[J]. 高原气象, 2019, 38(3): 539-551.
[4] 韩林君, 白爱娟. 2004-2017年夏半年西南涡在四川盆地形成降水的特征分析[J]. 高原气象, 2019, 38(3): 552-562.
[5] 蒋慧敏, 刘春云, 贾健, 赵德龙, 冯静洁. 新疆夏季对流性降水时空分布特征及成因分析[J]. 高原气象, 2019, 38(2): 340-348.
[6] 舒建川, 蒋兴文, 黄小梅, 伍清. 中国西南夏季降水预测的统计降尺度建模分析[J]. 高原气象, 2019, 38(2): 349-358.
[7] 潘欣, 尹义星, 王小军. 1960-2014年淮河流域极端降水发生时间的时空特征[J]. 高原气象, 2019, 38(2): 377-385.
[8] 刘江涛, 徐宗学, 赵焕, 何璟嫕. 不同降水卫星数据反演降水量精度评价——以雅鲁藏布江流域为例[J]. 高原气象, 2019, 38(2): 386-396.
[9] 刘恬, 高晓清, 谭桂容, 范艺媛, 惠小英. 中国江淮地区夏季强降水事件的统计分析[J]. 高原气象, 2019, 38(1): 136-142.
[10] 胡梦玲, 游庆龙. 青藏高原南侧经圈环流变化特征及其对降水影响分析[J]. 高原气象, 2019, 38(1): 14-28.
[11] 马佳宁, 高艳红. 近50年黄河上游流域年均降水与极端降水变化分析[J]. 高原气象, 2019, 38(1): 124-135.
[12] 刘田, 阳坤, 秦军, 田富强. 青藏高原中、东部气象站降水资料时间序列的构建与应用[J]. 高原气象, 2018, 37(6): 1449-1457.
[13] 许洁, 马耀明, 孙方林, 马伟强. 湖泊和上风向地形对纳木错地区秋季降水影响[J]. 高原气象, 2018, 37(6): 1535-1543.
[14] 张秋晨, 王俊, 李雪. 地基微波辐射计资料在对流云降水前的变化特征初探[J]. 高原气象, 2018, 37(6): 1578-1589.
[15] 岳治国, 梁谷. 陕西渭北一次降雹过程的粒子谱特征分析[J]. 高原气象, 2018, 37(6): 1716-1724.
img

QQ群聊

img

官方微信