农田和草地下垫面上附加阻尼kB-1变化特征的分析

鞠英芹-;徐自为;刘绍民;卢俐;徐同仁;刘寿东

PDF(691 KB)
高原气象 ›› 2014, Vol. 33 ›› Issue (1) : 55-65. DOI: 10.7522/j.issn.1000-0534.2013.00015
论文

农田和草地下垫面上附加阻尼kB-1变化特征的分析

  • 鞠英芹-;徐自为;刘绍民;卢俐;徐同仁;刘寿东
作者信息 +

Study on kB-1 on Farmland and Grass Underlying Surfaces

Author information +
History +

摘要

利用2010年阿柔站(草地)和馆陶站(农田)的观测资料, 运用阻尼法估算不同下垫面的热传输附加阻尼(kB-1), 分析日变化特征, 探讨用一个固定kB-1值来估算感热通量, 最后将估算值与M_1958、M_1963、M_1982、M_1989、M_1998、M_2002和M_2007七种参数化方案进行比较。结果表明, 在不同下垫面上, kB-1变化明显。除玉米下垫面、 玉米和裸地混合下垫面外, 其余下垫面kB-1均有抛物线型日变化, 与地气温差具有相关性。在植被下垫面, 可用中值或均值的kB-1计算感热通量。将不同参数化方案计算的感热通量与观测值之间进行比较发现, 在裸地下垫面, 与观测值最接近的参数化方案是M_1998方案; 在混合地表则为M_1958, M_1963和M_2007方案。

Abstract

Based on the data of Eddy Covariance (EC) system and Automatic Weather Station (AWS) collected at Guantao (farmland) and A’rou (grass) sites in 2010, the method of estimating  kB-1  is impedance method.The results have been used to analyze the daily variation characteristics of  kB-1  and to explore the possibility of using a fixed value to estimate sensible heat flux. And then, the estimates are compared with the values from the value of using seven parameterization schemes of M_1958, M_1963, M_1982, M_1989, M_1989, M_2002, and M_2007. The result shows that the values of  kB-1  have a obvious range on different underlying surfaces.kB-1 has a diurnal variation and also a good correlation with surface-air temperature difference, except maize and maize/bare soil. On the vegetation, the sensible heat flux is estimated with a median or mean value of  kB-1 . Comparing sensible heat flux using different parameterization schemes with the observed values, results of M_1998 are most close to the observe value on bare soil while in mixed terrain surface, M_1958, M_1963, and M_2007 are close to the observe value.

关键词

热力学附加阻尼 / 涡动相关仪 / 参数化方案 / 感热通量

Key words

kB-1 / Eddy Covariance(EC) / Parameterization sch / Sensible heat flux

引用本文

导出引用
鞠英芹-;徐自为;刘绍民;卢俐;徐同仁;刘寿东. 农田和草地下垫面上附加阻尼kB-1变化特征的分析. 高原气象. 2014, 33(1): 55-65 https://doi.org/10.7522/j.issn.1000-0534.2013.00015
鞠英芹-;徐自为;刘绍民;卢俐;徐同仁;刘寿东. Study on kB-1 on Farmland and Grass Underlying Surfaces. Plateau Meteorology. 2014, 33(1): 55-65 https://doi.org/10.7522/j.issn.1000-0534.2013.00015

参考文献

[1]Brutsaert W. Evaporation into the Atmosphere[M]. Dordrecht: D. Reidel Publishing Company, 1982: 352.
[2]Garratt J R. The atmospheric boundary layer[M]. Combridge: Cambridge University Press, 1992: 89.
[3]Owen P R, Thomson W R. Heat transfer across rough surfaces[J]. Journal of Fluid Mechanics, 1963, 15(3): 321-334.
[4]孙俊, 胡泽勇, 陈学龙, 等. 黑河中上游不同下垫面动量总体输送系数和地表粗糙度对比分析[J]. 高原气象, 2012, 31(4): 920-926.
[5]潘小多, 李新, 冉有华, 等. 下垫面对WRF模式模拟黑河流域区域气候精度影响研究[J]. 高原气象, 2012, 31(3): 657-667.
[6]张杰, 张强, 黄建平. 2007年5-10月黄土高原陆面能量通量特征研究[J]. 高原气象, 2007, 26(4): 855-863.
[7]Kustas W P, Choudhury B J, Moran M S, et al. Determination of sensible heat flux over sparse canopy using thermal infrared data[J]. Agricultural and Forest Meteorology, 1989, 44(3-4): 197-216.
[8]Sugita M, Brutsaert W. Regional surface fluxes from remotely sensed skin temperature and lower boundary measurement[J]. Water Resources Research, 1990, 26(12): 2937-2944.
[9]Stewart J B, Kustas W P, Humes K S, et al. Sensible heat flux-radiometric surface temperature relationship for eight semi-arid areas[J]. J Appl Meteor, 1994, 33(9): 1110-1117.
[10]Kohsiek W, De Bruin H A R, The H, et al. Estimation of the sensible heat flux of a semi-arid area using surface radiative temperature measurements[J]. Bound-Layer Meteor, 1993, 63(3): 213-230.
[11]Blyth E M, Dolman A J. The roughness length for heat of sparse vegetation[J]. J Appl Meteor, 1995, 34(2): 583-585.
[12]Troufleou D, Lhomme J P, Monteny B, et al. Sensible heat flux and radiometric surface temperature over sparse Sahelian vegetation I. An experimental analysis of the parameter[J]. J Hydrol, 1997, 188-189(1-4): 815-838.
[13]Lomme J P, Troufleau D, Monteny B, et al. Sendible heat flux and radiometric surface temperature over sparse Sahelian vegetation II. A model for the \%kB\%\+\{-1\} parameter[J]. J Hydrol, 1997, 188-189(1-4): 839-854.
[14]Verhoef W, De Bruin H A R, Van Den Hurk B J J M, et al. Some practical notes on the parameter for sparse vegetation[J]. J Appl Meteor, 1997, 36(5): 560-572.
[15]Sun J L. Diurnal variations of thermal roughness height over a grassland[J]. Bound-Layer Meteor, 1999, 92(3): 404-427.
[16]Ma Y M, Tsukamoto O, Wang J M, et al. Analysis of aerodynamic and thermodynamic parameters on the grassy marshland surface of Tibetan Plateau[J]. Progress in Natural Science, 2002, 12(1): 36-40.
[17]Yang K, Koike T, Yang D W. Surface flux parameterization in the Tibetan Plateau[J]. Bound-layer Meteor, 2003, 116(2): 245-262.
[18]Jia L. Modeling heat exchanges at the land-atmosphere interface using multi-angular thermal infrared measurements[D]. Wageningen University, 2004, ISBN 90-8504-041-8: 199.
[19]Yang K, Koike T, Ishikawa H, et al. Turbulent flux transfer over bare soil surfaces: Characteristics and parameterization[J]. J Appl Meteor Clim, 2008, 47(1): 276-290.
[20]Thom A S. Momentum, mass and heat exchange of plant communities[M]//Monteith J L, ed. Vegetation and the Atmosphere Principles. New York: Academic Press, 1975, 1: 57-109.
[21]Garratt J R, Hicks B B. Momentum, heat and water vapor transfer to and from natural and artificial surfaces[J]. Quart J Roy Meteor Soc, 1973, 99(422): 680-687.
[22]贾立, 王介民, 胡泽勇, 等. 干旱区热力学粗糙度特征及对感热通量估算的影响[J]. 高原气象, 2000, 19(4): 495-503.
[23]Sheppard P A. Transfer across the earth′s surface and through the air above[J]. Quart J Roy Meteor Soc, 1958, 84(361): 205-224.
[24]Zeng X B, Dickinson R E. Effect of surface sublayer on surface skin temperature and fluxes[J]. J Climate, 1998, 11(4): 537-550.
[25]Su Z B. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes[J]. Hydrol Earth Syst Sci, 2002, 6(1): 85-99.
[26]Yang K, Watanabe T, Koike T, et al. Auto-calibration system developed to assimilate AMSR-E data into a land surface model for estimating soil moisture and the surface energy budget[J]. J Meteor Soc, 2007, 85: 229-242.
[27]Kanda M, Kanega M, Kawai T, et al. Roughness lengths for momentum and heat derived from outdoor urban scale models[J]. J Appl Meteor Climatol, 2007, 46(7): 1067-1079.
[28]李燕, 刘新, 李伟平. 青藏高原地区不同下垫面陆面过程的数值模拟研究[J]. 高原气象, 2012, 31(3): 581-591.
[29]胡文超, 张文煜, 张宇, 等. 河西走廊下垫面粗糙度实测值与模拟值的差异性分析[J]. 高原气象, 2010, 29(1): 51-55.
[30]Schotanus P, Nieuwstadt F T M, De Bruin H A R. Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes[J]. Bound-Layer Meteor, 1983, 26(1): 81-93.
[31]Wilczak J M, Oncley S P, Stage S A. Sonic anemometer tilt correction algorithms[J]. Bound-Layer Meteor, 2001, 99(1): 127-150.
[32]Webb E K, Pearman G I, Leuning R. Correction of flux measurements for density effects due to heat and water vapour transfer[J]. Quart J Roy Meteor Soc, 1980, 106(447): 85-100.
[33]Liu S M, Xu Z W, Zhu Z L, et al. Measurements of evapotranspiration from eddy-covariance systems and large aperture scintillometers in the Hai River Basin, China[J]. J Hydrol, 2013, 487: 24-38.
[34]Lu L, Liu S M, Xu Z W, et al. The characteristics and parameterization of aerodynamic roughness length over heterogeneous surfaces[J]. Adv Atmos Sci, 2009, 26(1): 180-190.
[35]Foken T, Gckede M, Mauder M, et al. Post-field data quality control[M]//Lee X, Massman M, Law B, eds. Handbook of micrometeorology. A guide for surface flux measurement and analysis. Boston: KluwerAcademic, 2004: 181-208.
[36]李茂善, 杨耀先, 马耀明, 等. 纳木错(湖)地区湍流数据质量控制和湍流通量变化特征[J]. 高原气象, 2012, 31(4): 875-884.
[37]Paulson C A. The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer[J]. J Appl Meteor, 1970, 9(6): 857-861.
[38]Webb E K. Profile relationships: the log-linear range and extension to strong stability[J]. Quart J Roy Meteor Soc, 1970, 96(407): 67-90.
[39]Businger J A, Wyngaard J C, Izumi Y, et al. Flux profile relationships in the atmospheric surface layer[J]. J Atmos Sci, 1971, 28(2): 181-189.
[40]Liu S M, Lu L, Mao D F, et al. Evaluating parameterizations of aerodynamic resistance to heat transfer using field measurements[J]. Hydrol Earth Syst Sci, 2007, 11(2): 769-783.
[41]Xu T R, Liu S M, Liang S L, et al. Improveing predictions of water and heat fluxes by assimilating MODIS land surface temperature products into common land model[J]. J Hydrometeor, 2011, 12(2): 227-244.
[42]Su Z B, Schmugge T, Kustas W P, et al. An evaluation of two models for estimation of the roughness height for heat transfer between the land surface and the atmosphere[J]. J Appl Meteor, 2001, 40(11): 1933-1951.
[43]Garratt J R, Francey R J. Bulk characteristics of heat transfer in the unstable baroclinic atmospheric boundary layer[J]. Bound-Layer Meteor, 1978, 15(4): 399-421.
[44]Massman W J. A model study of kBH-1 for vegetated surfaces using ‘localized near-field’ Lagrangian theory[J]. J Hydrol, 1999, 223(1): 27-43.
[45]Choudhury B J, Monteith J L. A four-layer model for the heat budget of homogeneous land surfaces[J]. Quart J Roy Meteor Soc, 1988, 11(480): 373-398.
PDF(691 KB)

1482

Accesses

0

Citation

Detail

段落导航
相关文章

/