Please wait a minute...
高级检索
高原气象  2014, Vol. 33 Issue (2): 394-406    DOI: 10.7522/j.issn.1000-0534.2013.00195
论文     
梅雨期经大别山两侧暴雨中尺度低涡对比分析
苗春生1, 刘维鑫1,2, 王坚红1, 吴旻3, 李婷4
1. 南京信息工程大学, 南京 210044;
2. 95072部队气象中心, 南宁 530021;
3. 94995部队气象台, 南通 226552;
4. 宁夏气象台, 银川 756000
Comparison between Two Rainstorm Meso-scale Vortices Circumambulated Respectively from Two Sides of Mountain Dabieshan during Meiyu Season
MIAO Chunsheng1, LIU Weixin1,2, WANG Jianhong1, WU Min3, LI Ting4
1. School of Atmospheric Sciences, NUIST, Nanjing 210044, China;
2. Meteorological Center, No.95072 Army of PLA, Nanning 530021, China;
3. Meteorological Observatory, No.94995 Army of PLA, Nantong 226552, China;
4. Ningxia Meteorological Observatory, Yinchuan 756000, China
 全文: PDF(8180 KB)  
摘要:

通过统计分析2007-2011年梅雨期间江淮流域暴雨日数和低涡过程,结果表明低涡暴雨占41%,且绝大多数为浅薄低涡(700 hPa以下),此类低涡易受大别山地形影响。在地形和高空引导气流的共同作用下,经大别山南侧沿长江流域及经山脉北侧沿淮河流域的浅薄低涡遇大别山绕行、爬坡同时存在,并且北部低涡增强大于南侧,进而影响到低涡暴雨形成沿淮河流域和长江流域的两条雨带。环境高低空急流的风切变配置状态不仅有利于浅薄低涡的气旋式增强,并且指示低涡东移路径与低涡位置。而势力较弱的低空急流受大别山南部地形的影响,也表现出有绕行和减弱的阶段,进而可影响到山北淮河流域低涡的强度增幅和伴随的暴雨强度比山南长江流域低涡强一些。绕行山脉南北两侧的低涡暴雨带的湿位涡特征表明,垂直剖面上湿位涡正斜压分量垂向梯度带的配置,且其强度与对应的降水强度成正比,沿淮河的北路低涡湿位涡因环境风场垂直切变大,其强度更强。数值试验结果表明,大别山地形对低涡路径的南北绕行、低涡强度的山前减弱山后加强以及水汽辐合的强弱有直接影响。山脉南部迎风坡的强辐合抬升以及山脉北部弧形背风处对气流的拉伸辐合汇聚,成为大别山地形有利于水汽辐合上升,增强低涡暴雨量的两个重要部位。由于大别山南段的主体部分范围高大,所以对绕行山南部的低涡影响更为显著。

关键词: 江淮流域绕行低涡大别山阻挡地形效应湿位涡螺旋度    
Abstract:

A statistic analysis of rainstorm vortices during Meiyu seasons from 2007 to 2011 at YangtzeHuaihe River basin shows that the low vortex rainstorm is up to 41% in all rainstorm day during the statistical period, and most of the rainstorm vortices are shallow vortices (under 700 hPa), so they are easy to be impacted by the Dabieshan mountain (about 1500 m height). Two rainstorm vortices are analyzed when they circumambulate and climb the Dabieshan mountain from south along Yangtze River Basin and from north along Huaihe River Basin, respectively under both influences of mountain and steering current of trough foreside at high level. The shallow vortices go round the mountain from two sides with north stronger than south one, and cause their rain zone positions difference along Huaihe River basin and along Yangtze River basin respectively. Meantime the wind shear structure of high level jet and the low level jet together increase the cyclone vorticity of the shallow vortices and indicate the eastward paths and positions of low vortices. Meanwhile, the low level jet also responses to the mountain hindering,the weak low level jet is weaken and shows a circumambulated state to the mountain by blocking of the south part of Mountain Dabieshan. The circulation state causes a weak growing of both vortex and rainstorm intensities at south end than strong growing at north end of Mountain Dabieshan. The distribution of the moisture potential vorticity of vortex rainstorm shows that at vertical-longitudinal cross-section the baroclinic and barotropy gradient areas overlap each other and make a strong rainfall environment,the moisture potential vorticity is proportional to the intensity of rainfall,and the Huaihe River Basin vortex has stronger moisture potential vorticity as there is stronger vertical wind shear at north part of Mountain Dabieshan. The numerical simulation shows that the Dabieshan mountain topography remarkably impacts on the low vortex circumambulated paths from south or north, the low vortex intensity increases at leeward or decrease at windward, and moisture flux convergence strong or weak with vortex intensity. The topography effect causes the center position of low vortex, moisture convergence and rainfall easily close or overlap at two key areas (face-wind side of the mountain south part and the lee-ward arc area of mountain north part), where the air vertical stretched, moisture convergence strengthen and the rainfall of the vortex rainstorm are special heavy. Due to the south part of the mountain is larger and higher than the north part, the topography impact on the south vortex along Yangtze River Basin is more obvious.

Key words: Yangtze-Huaihe River basin    The circumambulated low vortex    Dabieshan mountain obstruction    Topographic effect    Moisture potential vorticity    Helicity
收稿日期: 2013-07-19 出版日期: 2014-04-24
:  P447  
基金资助:

国家科技支撑项目(2012BAH05B01);公益性行业(气象)科研专项(201206068);国家自然科学基金项目(41276033);南京气象雷达开放实验室研究基金(BJG201105);江苏高校优势学科建设工程资助项目(PAPD);中国气象局气候变化专项江苏气候变化评估项目(CCSF-201318)

作者简介: 苗春生(1954-),男,内蒙古呼市人,教授,主要从事大气中小尺度动力学研究. E-mail:csmiao@nuist.edu.cn
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
苗春生
刘维鑫
王坚红
吴旻
李婷

引用本文:

苗春生, 刘维鑫, 王坚红, 吴旻, 李婷. 梅雨期经大别山两侧暴雨中尺度低涡对比分析[J]. 高原气象, 2014, 33(2): 394-406.

MIAO Chunsheng, LIU Weixin, WANG Jianhong, WU Min, LI Ting. Comparison between Two Rainstorm Meso-scale Vortices Circumambulated Respectively from Two Sides of Mountain Dabieshan during Meiyu Season. PLATEAU METEOROLOGY, 2014, 33(2): 394-406.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2013.00195        http://www.gyqx.ac.cn/CN/Y2014/V33/I2/394

[1] 苗春生, 李婷. 长江与淮河两流域梅雨锋结构异同对比分析[C]. 南京: 大气科学前沿发展国际研讨会暨重点实验室年会文集, 2012 (5):26-27.

[2] 卢晶晶, 徐迪峰. 地形对中小尺度低涡活动影响的数值试验研究[J]. 暴雨灾害, 2011, 30(1):19-27.

[3] Letkewicz C E, Parker M D. Forecasting the maintenance of mesoscale convective systems crossing the Appalachian Mountains[J]. Wea Forcasting, 2010, 25:1179-1195.

[4] Lombardo K A, Colle B A. The spatial and temporal distribution of organized convective structures over the Northeast and their Ambient conditions[J]. Mon Wea Rev, 2010, 138:4456-4474.

[5] 丁冶英, 罗静, 沈新勇. 2008年6月20-21日一次β中尺度切变线、低涡降水机制研究[J]. 大气科学学报, 2010, 33(6):657-666.

[6] 赵玉春, 徐小峰, 崔春光. 中尺度地形对梅雨锋暴雨影响的个例研究[J]. 高原气象, 2012, 31(5):1268-1282

[7] 廖菲, 洪延超, 郑国光. 地形对降水的影响研究概述[J]. 气象科技, 2007, 35(3):309-316.

[8] Rudari R, Entekhabi D, Roth G. Terrain and multiple-scale interactions as factors in generating extreme precipitation events[J]. Hydro Meteor, 2004, 15: 390-404.

[9] Colle B A, Zeng Y G. Bulk micro-physical sensitivities within the MM5 for orographic precipitation. Part II: Impact of barrier width and freezing Level [J]. Mon Wea Rev, 2004, 132: 2802-2815.

[10] 葛晶晶, 钟玮, 杜楠, 等. 地形影响下四川暴雨的数值模拟分析[J]. 气象科学, 2008, 28(2):176-183.

[11] 池再香, 邱斌, 康学良, 等. 一次南支槽背景下地形对贵州水城南部特大暴雨的作用[J]. 大气科学学报, 2011, 34(6):708-716.

[12] 冯强, 叶汝杰, 王昂生, 等. 中尺度地形对暴雨降水影响的数值模拟研究[J]. 中国农业气象, 2004, 25(4):1-4.

[13] 董佩明, 赵思雄. 引发梅雨锋暴雨的频发型中尺度低压(扰动)的诊断研究[J]. 大气科学, 2004, 28(6):876-891.

[14] Wang Z, Gao K. Sensitivity experiments of an eastward-moving southwest vortex to initial perturbations [J]. Adv Atmos Sci, 2003, 20(4): 638-649.

[15] 王晓芳, 汪小康, 徐桂荣. 2010年长江中游梅雨期β中尺度系统环境特征的分析[J]. 高原气象, 2013, 32(3): 750-761, doi: 10.7522/j.issn.1000-0534.2012.00070.

[16] 胡伯威, 潘芬. 梅雨期江淮流域两类气旋性扰动和暴雨[J]. 应用气象学报, 1996, 7(2):138-144.

[17] 傅慎明, 于翡, 王东海, 等. 2010年梅雨期两类东移中尺度涡旋的对比研究[J].中国科学, 2012, 42(8):1282-1300.

[18] 王从梅, 丁治英. 河北夏季低涡暴雨的统计研究[J]. 自然灾害学报, 2006, 15(5):69-75.

[19] 赵娴婷, 苗春生, 于波. “0907”长江下游梅雨锋暴雨的数值模拟和诊断分析[J]. 气象科学, 2012, 32(2):194-201.

[20] 杨引明, 谷文龙, 赵锐磊, 等. 长江下游梅雨期低涡统计分析[J]. 应用气象学报, 2010, 21(1):11-18.

[21] 陆汉城, 杨国祥. 中尺度天气原理和预报[M]. 北京: 气象出版社, 2000: 9-10.

[22] 江玉华, 杜钦, 赵大军, 等. 引发四川盆地东部暴雨的西南涡结构特征研究[J]. 高原气象, 2012, 31(6):1562-1573.

[23] 刘梅, 张备, 俞剑蔚. 江苏梅汛期暴雨高空能量输送及高低空要素耦合特征[J]. 高原气象, 2012, 31(3):777-787.

[24] 朱营礼, 周淑玲, 林曲凤, 等. 一次入海气旋快速发展的动力和热力学特征分析[J]. 高原气象, 2012, 31(3):788-797.

[25] 吴国雄, 蔡雅萍, 唐晓箐. 湿位涡和倾斜涡度发展[J]. 气象学报, 1995, 53(4):387-405.

[26] Wu G X, Liu H Z. Vertical vorticity development owing to down-sliding at slantwise isentropic surface[J]. Dyn Atmos Oceans, 1997, 27: 715-743.

[27] 李耀辉, 寿绍文. 旋转风螺旋度及其在暴雨演变过程中的作用[J]. 南京气象学院学报, 1999, 22(1):95-102.

[28] Davies Jones R, Burgess D, Foster M. Test of helicity as a tornado forecast parameter. In: Preprints, 16th Conf on severe local storms[J]. Amer Meteor Soc, 1990: 588-592.

[1] 刘诗梦, 张杰, 于涵. 近30年江淮流域夏季年代际干旱特征及其与欧亚西风环流异常的关系[J]. 高原气象, 2018, 37(5): 1254-1263.
[2] 杨玮, 徐敏, 周顺武, 罗连升. 江淮流域6-7月极端强降水事件时空变化及环流异常[J]. 高原气象, 2017, 36(3): 718-735.
[3] 牛金龙, 黄楚惠, 李国平, 唐钱奎. 基于高分辨率资料的湿螺旋度指标及其对成都强降水的预报应用[J]. 高原气象, 2015, 34(4): 942-949.
[4] 岳彩军, 曹钰, 李小凡. 垂直螺旋度的拓展研究及应用[J]. , 2014, 33(5): 1281-1288.
[5] 张虹, 李国平, 王曙东. 西南涡区域暴雨的中尺度滤波分析[J]. 高原气象, 2014, 33(2): 361-371.
[6] 李晓容1,张雪蓉1,濮梅娟1-2. 梅汛期江淮切变线暴雨与非暴雨演变过程的合成对比分析研究[J]. 高原气象, 2014, 33(1): 199-209.
[7] 段莹,王文,蔡晓军. PDSI、 SPEI及CI指数在2010/2011年冬、春季江淮流域干旱过程的应用分析[J]. 高原气象, 2013, 32(4): 1126-1139.
[8] 杨小银1-2,宋广宁1,付培健1. “5.10”岷县暴雨灾害天气过程的数值
模拟和诊断分析
[J]. 高原气象, 2013, 32(3): 798-805.
[9] 白涛1-2,李崇银1, 3,王铁1,谭言科1,李刚1. 干侵入对陕西“2008.07.21”暴雨过程的影响分析[J]. 高原气象, 2013, 32(2): 345-.
[10] 王伏村1-2,许东蓓3,王宝鉴3,付双喜4,代德彬2. 敦煌致洪暴雨的广义湿位涡分析[J]. 高原气象, 2013, 32(1): 145-155.
[11] 王宏, 王万筠, 余锦华, 王丛梅, 王新龙. 河北东北部暴雪天气过程的湿位涡分析[J]. 高原气象, 2012, 31(5): 1302-.
[12] 陈涛, 张芳华, 宗志平. 一次南方春季强对流过程中影响对流发展的
环境场特征分析
[J]. 高原气象, 2012, 31(4): 1019-1031.
[13] 葛晶晶1, 陆汉城2, 张群1, 钟玮2, 何循山1. 强烈发展的中尺度涡旋影响下持续性暴雨的位涡诊断[J]. 高原气象, 2012, 31(4): 952-962.
[14] 赖绍钧, 何芬, 陈海山, 沈桐立, 吴伟杰, 吴毅伟. 华南前汛期福建一次致洪暴雨过程的中尺度结构特征[J]. 高原气象, 2012, 31(1): 167-175.
[15] 魏林波, 周甘霖, 王式功, 尚可政, 马玉霞. 亚洲副热带高空西风急流活动的气候特征及其与我国部分地区夏季降水的关系[J]. 高原气象, 2012, 31(1): 87-93.
img

QQ群聊

img

官方微信