Please wait a minute...
高级检索
高原气象  2014, Vol. 33 Issue (2): 323-336    DOI: 10.7522/j.issn.1000-0534.2014.00012
论文     
CLM4.0土壤水分传输方案改进在青藏高原陆面过程模拟中的效应
熊建胜1,2, 张宇1, 王少影1, 尚伦宇1, 陈云刚1,2, 沈晓燕1,2
1. 中国科学院寒区旱区环境与工程研究所 寒旱区陆面过程与气候变化重点实验室, 兰州 730000;
2. 中国科学院大学, 北京 100049
Influence of Soil Moisture Transmission Scheme Improvement in CLM4.0 on Simulation of Land Surface Process in Qinghai-Xizang Plateau
XIONG Jiansheng1,2, ZHANG Yu1, WANG Shaoying1, SHANG Lunyu1, CHEN Yungang1,2, SHEN Xiaoyan1,2
1. Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Cold and Arid Regions Environment Research Institute, Chinese Academy of Science, Lanzhou 730000, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(7267 KB)  
摘要:

利用2010年5月25日-12月31日玛曲高寒草原的气象观测资料和陆面过程模式(CLM4.0)对玛曲高寒草原陆面过程进行了数值模拟。通过评估模式的模拟性能、模式对含砂量的敏感程度以及模式土壤水分传输方案改进对青藏高原地区陆面过程模拟的影响,发现CLM4.0模式能较好地再现观测站土壤温、湿度、地表辐射、湍流通量等的变化趋势,但土壤温度模拟偏低,感热通量模拟偏大;含砂量增多会减弱土壤的持水能力,使得夏季感热通量增大而潜热通量减小;CLM4.0模式中新引入的有机质对土壤温、湿度模拟均有重要影响,Richards方程和径流计算的修改则对土壤含水量模拟影响较大,这对其他陆面模式的改进具有一定的指导意义。

关键词: 青藏高原陆面过程CLM4.0模式土壤水分传输方案    
Abstract:

Using the Community Land Model version 4.0(CLM4.0) and the observed meteorological data at Maqu station in the Qinghai-Xizang Plateau from 25 May to 31 December 2010 as the forcing data, several simulation experiments have been done. After evaluating the model simulation performance, the model sensitivity to the sand content and the effect of soil moisture transmission scheme improvement on the simulation of land surface process in the Qinghai-Xizang Plateau, it is found that the model can reflect the variation trend of soil temperature and moisture, surface radiation, turbulance energy at Maqu station, but the simulated soil temperature is low and sensible heat flux is too large. The increase of the sand content will decrease the water holding capacity of soil, which leads to the sensible heat flux increasing and latent heat flux decreasing in summer. The organic matters added in CLM4.0 have an important influence on the simulation of both soil temperature and moisture, however, the modified Richards equation and runoff parameters affect much more the simulation of soil moisture, which is a guide to the improvement of other land surface models.

Key words: Qinghai-Xizang Plateau    Land surface process    CLM4.0 model    Soil moisture transmission scheme
收稿日期: 2013-12-23 出版日期: 2014-04-24
:  P404  
基金资助:

公益性行业专项(GYHY201306020,GYHY201106022);国家自然科学基金项目(41205006,41275016);中国科学院寒区旱区环境与工程研究所青年人才成长基金(51Y351181)

通讯作者: 张宇. E-mail:yuzhang@lzb.ac.cn     E-mail: yuzhang@lzb.ac.cn
作者简介: 熊建胜(1989-),男,江苏南京人,硕士研究生,主要从事陆面过程与数值模拟研究. E-mail:xjsheng@lzb.ac.cn
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
熊建胜
张宇
王少影
尚伦宇
陈云刚
沈晓燕

引用本文:

熊建胜, 张宇, 王少影, 尚伦宇, 陈云刚, 沈晓燕. CLM4.0土壤水分传输方案改进在青藏高原陆面过程模拟中的效应[J]. 高原气象, 2014, 33(2): 323-336.

XIONG Jiansheng, ZHANG Yu, WANG Shaoying, SHANG Lunyu, CHEN Yungang, SHEN Xiaoyan. Influence of Soil Moisture Transmission Scheme Improvement in CLM4.0 on Simulation of Land Surface Process in Qinghai-Xizang Plateau. PLATEAU METEOROLOGY, 2014, 33(2): 323-336.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2014.00012        http://www.gyqx.ac.cn/CN/Y2014/V33/I2/323

[1] Dickinson R E, Oleson K W, Bonan G, et al. The Community Land Model and its climate statistics as a component of the Community Climate System Model[J]. J Climate, 2006, 19(11): 2302-2324.

[2] Lawrence D M, Oleson K W, Flanner M G, et al. Parameterization improvements and functional and structural advances in version 4 of the Community Land Model[J]. J Adv Model Earth Syst, 2011, 3(1), doi: 10.1029/2011MS000045.

[3] Lawrence D M, Slater A G, Romanovsky V E, et al. Sensitivity of a model projection of near-surface permafrost degradation to soil column depth and representation of soil organic matter[J]. J Geophys Res, 2008, 113, F02011, doi:10.1029/2007JF000883.

[4] Flanner M G, Zender C S. Linking snowpack microphysics and albedo evolution[J]. J Geophys Res, 2006, 111, D12208, doi: 10.1029/2005JD006834.

[5] Sakuguchi K, Zeng X. Effects of soil wetness, plant litter, and under-canopy atmospheric stability on ground evaporation in the Community Land Model(CLM3.5)[J]. J Geophys Res, 2009, 114, D01107, doi: 10.1029/2008JD010834.

[6] Randerson J T, Hoffman F M, Thornton P E, et al. Systematic assessment of terrestrial biogeochemistry in coupled climate carbon models[J]. Global Change Biology, 2009, 15(10): 2462-2484.

[7] Lawrence D M, Slater A G. Incorporating organic soil into a global climate model[J]. Climate Dyn, 2008, 30(2-3): 145-160.

[8] Zeng X, Decker M. Improving the numerical solution of soil moisture-based Richards equation for land models with a deep or shallow water table[J]. J Hydrometeor, 2009, 10(1): 308-319.

[9] Decker M, Zeng X. Impact of modified Richards equation on global soil moisture simulation in the Community Land Model (CLM3.5)[J]. J Adv Mode Earth Syst, 2009, 1(3): doi: 10.3894/JAMES.2009.1.5.

[10] Oleson K W, Niu G Y, Yang Z L, et al. Improvements to the Community Land Model and their impact on the hydrological cycle[J]. J Geophys Res, 2008, 113, G01021, doi: 10.1029/2007JG000563.

[11] 周万福, 周秉荣, 李晓东, 等. 青藏高原东部地区辐射平衡及各分量变化特征[J]. 高原气象, 2013, 32(2): 327-333, doi: 10.7522/j.issn.1000-0534.2012.00032.

[12] 王愚, 胡泽勇, 荀学义, 等. 藏北高原土壤热传导率参数化方案的优化和检验[J]. 高原气象, 2013, 32(3): 646-653, doi: 10.7522/j.issn.1000-0534.2013.00063.

[13] 吴晓鸣, 马伟强, 马耀明. 夏季藏北高原地表热通量特征观测与模拟[J]. 高原气象, 2013, 32(5): 1246-1252, doi: 10.7522/j.issn.1000-0534.2013.00082.

[14] 王学佳, 杨梅学, 万国宁. 近60年青藏高原地区地面感热通量的时空演变特征[J]. 高原气象, 2013, 32(6): 1557-1567, doi: 10.7522/j.issn.1000-0534.2012.00151.

[15] 罗斯琼, 吕世华, 张宇, 等. CoLM模式对青藏高原中部BJ站陆面过程的数值模拟[J]. 高原气象, 2008, 27(2): 259-271.

[16] 张宇. 藏北高原陆面过程的模拟试验[J]. 大气科学, 2002, 26(3): 387-393.

[17] 王澄海, 师锐. 青藏高原西部陆面过程特征的模拟分析[J]. 冰川冻土, 2007, 29(1): 73-81.

[18] 王澄海, 师锐, 左洪超. 青藏高原西部冻融期陆面过程的模拟分析[J]. 高原气象, 2008, 27(2): 240-248.

[19] 陈海山, 孙照渤. 青藏高原单点地气交换过程的模拟试验[J]. 高原气象, 2005, 24(1): 9-15.

[20] Luo S, Lü S, Zhang Y. Development and validation of the frozen soil parameterization scheme in Common Land Model[J]. Cold Regions Science and Technology, 2009, 55(1): 130-140.

[21] 王少影, 张宇, 吕世华, 等. 玛曲高寒草甸地表辐射与能量收支的季节变化[J]. 高原气象, 2012, 31(3): 605-614.

[22] 邵明安, 王全九, 黄明斌. 土壤物理学[M]. 北京: 高等教育出版社, 2006: 19.

[23] Flanner M G, Zender C S. Snowpack radiative heating: Influence on Tibetan Plateau climate[J]. Geophys Res Lett, 2005, 32, L06501, doi: 10.1029/2004GL022076.

[24] Flanner M G, Zender C S, Randerson J T, et al. Present day climate forcing and response from black carbon in snow[J]. J Geophys Res, 2007, 112, D11202, doi: 10.1029/2006JD08003.

[25] Niu G Y, Yang Z L. An observation based formulation of snow cover fraction and its evaluation over large North American river basins[J]. J Geophys Res, 2007, 112, D21101, doi: 10.1029/2007JD008674.

[26] Hogrefe C, Rao S T, Kasibhatla P, et al. Evaluating the performance of regional-scale photochemical modeling systems: Part I-Meteorological predictions[J]. Atmos Environ, 2001, 35(24): 4159-4174.

[27] Yu S C, Eder B, Dennis R, et al. New unbiased symmetric metrics for evalution of air quality models[J]. Atmos Sci Lett, 2006, 7(1): 26-34.

[28] Zeng X, Dickinson R E. Effect of surface sublayer on surface skin temperature and fluxes[J]. J Climate, 1998, 11: 537-550.

[29] 张宇, 吕世华. 陆面过程模式对不同土壤物理性质的敏感性研究[J]. 冰川冻土, 2001, 23(3): 270-275.

[30] Bonan G B, Shugart H H. Environmental factors and ecological processes in boreal forests[J]. Ann Rev Ecol Sys, 1989, 20: 1-28.

[31] Hinzman L, Kane D, Gieck R, et al. Hydrologic and thermal properties of the active layer in the Alaskan Arctic[J]. Cold Regions Science and Technology, 1991, 19(2): 95-110.

[32] 陈渤黎, 吕世华, 罗斯琼. CLM3.5模式对青藏高原玛曲站陆面过程的数值模拟研究[J]. 高原气象, 2012, 31(6): 1511-1522.

[33] Holton J R. An Introduction to Dynamic Meteorology[M]. 4th ed. International Geophysics Series. California: Elsevier Academic Press, 2004: 88, 535.

[1] 刘菊菊, 游庆龙, 王楠. 青藏高原夏季云水含量及其水汽输送年际异常分析[J]. 高原气象, 2019, 38(3): 449-459.
[2] 陈月, 李跃清, 范广洲, 陈宇航. 青藏高原大气蕴含潜热时空分布特征研究[J]. 高原气象, 2019, 38(3): 460-473.
[3] 王奕丹, 胡泽勇, 孙根厚, 谢志鹏, 严晓强, 郑汇璇, 付春伟. 高原季风特征及其与东亚夏季风关系的研究[J]. 高原气象, 2019, 38(3): 518-527.
[4] 郑汇璇, 胡泽勇, 孙根厚, 谢志鹏, 严晓强, 王奕丹, 付春伟. 那曲高寒草地总体输送系数及地面热源特征[J]. 高原气象, 2019, 38(3): 497-506.
[5] 明绍慧, 秦正坤, 黄瑜. 卫星资料揭示的青藏高原对流层上层温度气候演变趋势特征[J]. 高原气象, 2019, 38(2): 264-277.
[6] 杜牧云, 王斌, 肖艳姣, 付志康, 周伶俐. X波段双线偏振雷达青藏高原观测资料质量分析[J]. 高原气象, 2019, 38(2): 278-287.
[7] 常姝婷, 刘玉芝, 华珊, 贾瑞. 全球变暖背景下青藏高原夏季大气中水汽含量的变化特征[J]. 高原气象, 2019, 38(2): 227-236.
[8] 于涵, 张杰, 刘诗梦. 青藏高原地表非绝热加热模态及其与中国北方环流异常的联系[J]. 高原气象, 2019, 38(2): 237-252.
[9] 严晓强, 胡泽勇, 孙根厚, 谢志鹏, 王奕丹, 郑汇璇. 那曲高寒草地长时间地面热源特征及其气候影响因子分析[J]. 高原气象, 2019, 38(2): 253-263.
[10] 余小嘉, 杨胜朋, 蒋熹. COSMIC掩星资料在青藏高原地区的偏差特征[J]. 高原气象, 2019, 38(2): 288-298.
[11] 朱平, 俞小鼎. 青藏高原东北部一次罕见强对流天气的中小尺度系统特征分析[J]. 高原气象, 2019, 38(1): 1-13.
[12] 屠妮妮, 郁淑华, 高文良. 风场对高原涡在河套地区打转影响的初步分析[J]. 高原气象, 2019, 38(1): 66-77.
[13] 胡梦玲, 游庆龙. 青藏高原南侧经圈环流变化特征及其对降水影响分析[J]. 高原气象, 2019, 38(1): 14-28.
[14] 王玉琦, 鲍艳, 南素兰. 青藏高原未来气候变化的热动力成因分析[J]. 高原气象, 2019, 38(1): 29-41.
[15] 刘田, 阳坤, 秦军, 田富强. 青藏高原中、东部气象站降水资料时间序列的构建与应用[J]. 高原气象, 2018, 37(6): 1449-1457.
img

QQ群聊

img

官方微信