Please wait a minute...
高级检索
高原气象  2015, Vol. 34 Issue (4): 1074-1083    DOI: 10.7522/j.issn.1000-0534.2014.00025
论文     
“7·21”北京特大暴雨过程龙卷形成可能性探究
张琳娜, 郭锐, 何娜, 贺赟, 吴剑坤
北京市气象台, 北京 100089
Study on Whether a Tornado Occurred of ‘7·21’ Rainstorm in Beijing
ZHANG Linna, GUO Rui, HE Na, HE Yun, WU Jiankun
Beijing Meteorology Observatory, Beijing 100089, China
 全文: PDF(9465 KB)  
摘要:

针对2012年7月21日北京发生了自有正规气象记录以来最强的降水过程, 位于北京东部平原的通州地区在暴雨发生前出现了严重风灾。从天气尺度背景、雷达回波特征的角度详细论述了此次风灾是由龙卷造成的可能性, 并使用VDRAS反演资料分析了造成龙卷的超级单体动力结构特征。实况探测资料研究表明, 该地区大尺度天气背景和大气温湿层结条件、三维环境风场切变条件都有利于龙卷的发生、发展。首先, 雷达反射率因子回波在发展最强盛阶段由于近地层强偏东风入流上升, 在中层形成的有界弱回波区和径向速度回波的强中气旋两个特点, 表明造成风灾的对流系统是一个发展完善的超级单体。进而, 由超级单体在热力边界层300 m高度处的辐合上升运动表明了龙卷的出现, 径向速度回波上分析出的TVS进一步证明了这是一次龙卷过程。最后, 利用VDRAS反演的风场给出了这个超级单体风暴在空间结构上的动力特征: 单体移动方向右侧低层为偏东风入流层, 初生阶段入流层偏东风层次较高, 东风随高度减弱, 与高空随高度增强的偏西风出流层形成了稳定的垂直风切变; 发展最强盛阶段低层为强东风入流、高空为强西风出流, 超级单体中心为强烈的上升运动, 致使超级单体本身形成了一个完整的垂直环流, 而单体的减弱则伴随着环境稳定垂直风切变的减弱和自身垂直环流的坍塌。

关键词: 龙卷超级单体中气旋TVSVDRAS    
Abstract:

‘7·21’ rainstorm has been the new record of precipitation process in Beijing. Before the rainstorm, Tongzhou district in Beijing's eastern plains suffered strong wind attack. Because of not witnessed, whether it is caused by a tornado or not has been the focus of debating. After studying synoptic environment and radar echo data, it is proved that it is a tornado caused the gale; then using VDRAS data analyzed the dynamic structure of supercell storm. Study showed, the synoptic situation, vertical structure on temperature, humidity and wind are very conducive to the occurrence and development of tornadoes. BWER in reflectivity echo and mesocyclone in velocity echo showed it's a supercell storm; the convergence in 300 m and TVS further confirmed it's a tornado process. At last using the VDRAS inversion wind field showed the dynamic characteristics of the supercell storm: Low level in right rear the storm movement direction is easterly inflow layer, in start stage, easterly inflow layer is in higher, then the easterly wind weakened with height reduced. It forms a stable wind shear with high level enhanced westerly wind of outflow layer; in the mature stage, the storm has strong easterly inflow in low-level, and westerly outflow in high-level. At the core of supercell storm there is strong upward movement, so the supercell storm itself has forming a complete vertical circulation. The supercell storm is weakened when the environmental vertical wind shear is weakened and vertical circulation collapse.

Key words: Tornado    Supercell    Mesocyclone    TVS    VDRAS
收稿日期: 2013-01-07 出版日期: 2015-08-24
:  P445+.1  
基金资助:

北京市气象局创新团队建设; 公益性行业(气象)专项(GYHY201506006)

作者简介: 张琳娜(1977-), 女, 陕西宝鸡人, 高级工程师, 主要从事北京地区天气预报, E-mail:zln_zhang@sina.com
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张琳娜
郭锐
何娜
贺赟
吴剑坤

引用本文:

张琳娜, 郭锐, 何娜, 贺赟, 吴剑坤. “7·21”北京特大暴雨过程龙卷形成可能性探究[J]. 高原气象, 2015, 34(4): 1074-1083.

ZHANG Linna, GUO Rui, HE Na, HE Yun, WU Jiankun. Study on Whether a Tornado Occurred of ‘7·21’ Rainstorm in Beijing. PLATEAU METEOROLOGY, 2015, 34(4): 1074-1083.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2014.00025        http://www.gyqx.ac.cn/CN/Y2015/V34/I4/1074

[1] Brooks E M. The tornado cyclone[J]. Weatherwise, 1949, 2:32-33.

[2] Fujita T T. Analytical meso-meteorology:A review, severe local storms[J]. Meteor Monogr, Amer Meteor Soc, 1963, 27:77-125.

[3] Browning K A. Airflow and precipitation trajectories within severe local storms which travel to the right of the winds[J]. J Atmos Sci, 1964, 21:634-639.

[4] Donaldson R J. Vortex signature recognition by a doppler radar[J]. J Appl Meteor, 1970, 9:661-670.

[5] Brown R A, Lemon L R, Burgess D W. Tornado detection by pulsed doppler radar[J]. Mon Wea Rev, 1978, 106:29-38.

[6] Doswell C A. Severe convective storms:An overview. Severe Convective Storms[J]. Meteor Monogr, 2001, 50:1-26.

[7] Trapp R J. A reassessment of the per cent age of tornadic mesocyclones[J]. Wea Forecasting, 2005, 20:680-687.

[8] 吴木贵, 张信华, 傅伟辉, 等. 2010年3月5日闽北经典超级单体风暴天气过程分析[J]. 高原气象, 2013, 32(1):250-267, doi:10.7522/j.issn.1000-0534.2013.00025.

[9] 姚叶青, 郝莹, 张义军, 等. 安徽龙卷发生的环境条件和临近预警[J]. 高原气象, 2012, 31(6):1721-1730.

[10] 郑峰, 钟建锋, 张灵杰. 超强台风"圣帕"引发温州类龙卷的特征分析[J]. 高原气象, 2012, 31(1):231-238.

[11] 刘式达, 刘式适, 梁福明. 大气涡旋的螺旋结构[J]. 大气科学, 2006, 30(5):850-853.

[12] 周小刚, 王秀明, 俞小鼎, 等. 逾量旋转动能在区分我国龙卷与非龙卷中气旋中的应用[J]. 高原气象, 2012, 31(1):137-143.

[13] 肖艳姣, 万玉发, 王珏, 等. 一种自动多普勒雷达速度退模糊算法研究[J]. 高原气象, 2012, 31(4):1119-1128.

[14] 俞小鼎, 王迎春, 陈明轩, 等. 新一代天气雷达与强对流天气预警[J]. 高原气象, 2005, 24(3):456-464.

[15] 郑媛媛, 俞小鼎, 方翀, 等. 2003 年7月8日安徽系列龙卷的新一代天气雷达分析[J]. 气象, 2004, 30(1):38-40.

[16] 郑媛媛, 俞小鼎, 方翀, 等. 一次典型超级单体风暴的多普勒天气雷达观测分析[J]. 气象学报, 2004, 62(3):317-328.

[17] 俞小鼎, 郑媛媛, 张爱民, 等. 安徽一次强烈龙卷的多普勒天气雷达分[J]. 高原气象, 2006, 25(5):914-924.

[18] 俞小鼎, 张爱民, 郑媛媛,等. 一次系列下击暴流事件的多普勒天气雷达分析[J]. 应用气象学报, 2006, 17(4):386-393.

[19] 俞小鼎, 郑媛媛, 廖玉芳, 等. 一次伴随强烈龙卷的强降水超级单体风暴研究[J]. 大气科学, 2008, 32(3):508-522.

[20] 郑媛媛, 朱红芳, 方翔, 等. 强龙卷超级单体风暴特征分析与预警研究[J]. 高原气象, 2009, 28(3):617-625.

[21] 魏文秀, 赵亚民. 中国龙卷风的若干特征[J]. 气象, 1995, 21(5):37-40.

[22] 俞小鼎. 2012年7月21日北京特大暴雨成因分析[J]. 气象, 2012, 38(11):1313-1329.

[23] Brooks H E, Craven J P. A database proximity soundings for significant severe thunderstorms, 1957-1993[M]. Preprints, 21th Conference on Severe Local Storms, San Antonio, Texas, American Meteorological Society, 2002:639-642.

[24] Evans J S, Doswell C A. Investigating derecho and super cell proximity soundings[M]. Preprints, 21th Conference on Severe Local Storms, San Antonio, Texas, American Meteorological Society, 2002:635-638.

[25] Davies J M, Johns R H. Some Wind and Instability Parameters Associated with Strong and Violent Tornadoes:I:Wind Shear and Helicity[M]. The Tornado:Its Structure, Dynamics, Prediction and Hazards. American Geophysical Union, 1993:573-582.

[26] 俞小鼎, 姚秀萍, 熊廷南, 等. 多普勒天气雷达原理与业务应用[M]. 北京:气象出版社, 2006:313.

[27] Chen M X, Sun J, Wang Y C. A Frequent-updating High-resolution Analysis System Based on Radar Data for the 2008 Summer Olympics[C]. Preprints, the 33rd International Conference on Radar Meteorology. Amer Meteor Soc, Cairns, Australia, August 2007.

[1] 慕熙昱, 徐琪, 潘玉洁, 孙世玮, 李昕, 黄安宁. 雷达径向速度资料同化中不同坐标转换方案的对比试验[J]. 高原气象, 2019, 38(3): 625-635.
[2] 徐小红, 余兴, 朱延年, 刘贵华, 戴进. 6·23龙卷FY-2G卫星云微物理特征分析[J]. 高原气象, 2018, 37(6): 1737-1748.
[3] 张桂莲, 常欣, 黄晓璐, 訾耀海, 李瑞青, 梁凤娟. 东北冷涡背景下超级单体风暴环境条件与雷达回波特征[J]. 高原气象, 2018, 37(5): 1364-1374.
[4] 陈贵川, 吴钲, 谌芸, 李强, 朱岩. 中低层增温对强降水中涡旋形成的敏感性研究[J]. 高原气象, 2016, 35(6): 1498-1511.
[5] 徐学义, 赵振东, 梁红新. 三次非超级单体龙卷风暴多普勒雷达特征对比分析[J]. , 2014, 33(4): 1164-1172.
[6] 黎惠金1,李向红2,黄芳3,李江南4,覃昌柳1. 广西一次特大暴雨的MCC演变
过程及结构特征分析
[J]. 高原气象, 2013, 32(3): 806-817.
[7] 吴木贵1,张信华2,傅伟辉1,赖荣钦1,冯晋勤3. 2010年3月5日闽北经典超级单体风暴天气过程分析[J]. 高原气象, 2013, 32(1): 250-267.
[8] 姚叶青1-3,郝莹3,张义军4,李劲3,刘高平3,邱学兴3,余金龙3,刘远永3. 安徽龙卷发生的环境条件和临近预警[J]. 高原气象, 2012, 31(6): 1721-1730.
[9] 苏爱芳, 银燕, 蔡淼. 夏末华北低槽尾部雹云的生成环境和结构特征[J]. 高原气象, 2012, 31(5): 1376-.
[10] 姚晨, 郑媛媛, 张雪晨. 长生命史飑线在强、 弱对流降水过程中的异同点分析[J]. 高原气象, 2012, 31(5): 1366-.
[11] 冯晋勤, 俞小鼎, 傅伟辉, 曹长尧. 2010年福建一次早春强降雹超级单体风暴对比分析[J]. 高原气象, 2012, 31(1): 239-250.
[12] 郑峰, 钟建锋, 张灵杰. 超强台风“圣帕”引发温州类龙卷的特征分析[J]. 高原气象, 2012, 31(1): 231-238.
[13] 周小刚, 王秀明, 俞小鼎, 费海燕. 逾量旋转动能在区分我国龙卷与非龙卷中气旋中的应用[J]. 高原气象, 2012, 31(1): 137-143.
[14] 李延江, 孙丽华, 杨梅. 一次山区龙卷的双部雷达回波监测分析[J]. 高原气象, 2011, 30(6): 1701-1708.
[15] 王福侠, 裴宇杰, 杨晓亮, 李宗涛, 俞小鼎. “090723”强降水超级单体风暴特征及
强风原因分析
[J]. 高原气象, 2011, 30(6): 1690-1700.
img

QQ群聊

img

官方微信