Please wait a minute...
高级检索
高原气象  2016, Vol. 35 Issue (6): 1430-1440    DOI: 10.7522/j.issn.1000-0534.2015.00110
论文     
数值预报在青藏高原的不确定性对其下游预报的影响
张宇1,2, 陈德辉3, 仲跻芹4
1. 南京信息工程大学, 南京 210044;
2. 中国气象科学研究院, 北京 100091;
3. 国家气象中心, 北京 100091;
4. 中国气象局北京城市气象研究所, 北京 100142
The Numerical Prediction Uncertainties of the Tibetan Plateau Impacting the Forecasts of Its Downsteam Region
ZHANG Yu1,2, CHEN Dehui3, ZHONG Jiqin4
1. Nanjing University of Information Science and Technology, Nanjing 210044, China;
2. Chinese Academy of Meteorological Science, Beijing 100091, China;
3. National Meteorological Centre, Beijing 100091, China;
4. Institute of Urban Meteorology, Beijing 100142, China
 全文: PDF(3538 KB)   HTML
摘要:

通过NCEP全球预报在不同地区的预报误差分析、包含大地形(亚洲青藏高原、北美落基山脉)与否的区域模拟试验、同化青藏高原地区人造观测的观测系统模拟试验,探讨了数值预报在青藏高原地区的不确定性对其下游地区预报的影响。结果表明:(1)数值模式在青藏高原地区的不确定性包括模式本身的动力与物理过程不确定性以及模式初值的不确定性,这种不确定性引起的预报误差会制约青藏高原下游地区预报性能;(2)若数值模拟区域不包含青藏高原地区,可避免青藏高原地区的模式不确定性引起的预报误差对下游地区的影响,提高下游地区预报技巧;(3)同化青藏高原地区“人造”加密观测资料,可有效减少数值预报在青藏高原地区的初值不确定性,进而减小青藏高原本区及其下游地区的预报误差、改进预报水平。

关键词: 青藏高原模式不确定性初值不确定性观测系统模拟试验    
Abstract:

The influence of the initial uncertainties on the NWP forecasts over the Tibetan Plateau (TP) and adjacent regions was studied based on the GFS forecasts/WRF model and OSSE experiments. The result shows that:(1) The large uncertainties of Tibetan Plateau (TP), because of the scarcely observations and complex terrain, can affect the NWP forecasts over the TP region and decrease the forecast skill of the downstream region of TP. After comparing the forecast errors over the TP and the downstream regions, it is found that the errors over the TP region are larger than the errors over the TP adjacent/Pacific Ocean and Rocky Mountain regions on the first 24 hours' integration:the error amplification rate over the TP adjacent region are larger than other regions evidently. (2) The forecast error rise faster over the downstream of TP region than the downstream of the Rocky Mountain (US). The WRF model forecasts results, with/without the large terrain (TP/Rocky Mountain), indicate that the forecast errors over the downstream region of the TP/Rocky Mountain are larger if the model domain contains the large terrain areas:this error divergence significantly after 2-days integration. (3) The observation data over TP region have effect on the forecasts of the downstream areas:additional "synthetic" observation data can decrease the initial uncertainties over the TP region and then improve the forecast skills over the downstream of TP region. Therefore, this study suggests that in order to reduce the initial uncertainties influence over the TP region, the additional observations even the "synthetic" observations over the TP region could assimilated to the NWP model.

Key words: Tibetan Plateau    Model uncertainties    Initial uncertainties    OSSE
收稿日期: 2015-03-19 出版日期: 2016-12-20
:  P435+.1  
基金资助:

科技部973重大基础研究项目(2013CB430106);公益性行业(气象)科研专项(GYHY201406012);国家自然科学基金项目(91437221)

通讯作者: 陈德辉.E-mail:chendh@cma.gov.cn     E-mail: chendh@cma.gov.cn
作者简介: 张宇(1986-),男,重庆人,博士研究生,主要从事适应性观测,观测系统模拟试验研究.E-mail:zhangyu_meteo@163.com
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张宇
陈德辉
仲跻芹

引用本文:

张宇, 陈德辉, 仲跻芹. 数值预报在青藏高原的不确定性对其下游预报的影响[J]. 高原气象, 2016, 35(6): 1430-1440.

ZHANG Yu, CHEN Dehui, ZHONG Jiqin. The Numerical Prediction Uncertainties of the Tibetan Plateau Impacting the Forecasts of Its Downsteam Region. PLATEAU METEOROLOGY, 2016, 35(6): 1430-1440.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2015.00110        http://www.gyqx.ac.cn/CN/Y2016/V35/I6/1430

Arnold C J, Dey C. 1986. Observing-system simulation experiments:past, present, and future[J]. Bull Amer Meteor Soc, 67:687-695.

Chen Lianshou, Luo Zhexian. 2003. A preliminary study of the dynamicsof eastward shifting cyclonic vortices[J]. Adv Atmos Sci, 20(3):323-332.

DanforthC M, Eugenia K, Takemasa M. 2007. Estimating and correcting global weather model error[J]. Mon Wea Rev, 135(2):281-299.

Davies H C, Marco D. 2013. Diagnosis and dynamics of forecast error growth[J]. Mon Wea Rev, 141(7):2483-2501.

Errico R M, Yang R, Prive N, et al. 2013. Development and validation of observing-system simulation experiments at NASA's Global Modeling and Assimilation Office[J]. Q J Roy Meteor Soc, 139(674):1162-1178.

Langland R H, Melvyn A S, Ronald G. 2002. Initial condition sensitivity and error growth in forecasts of the 25 January 2000 east coast snowstorm[J]. Mon Wea Rev, 130(4):957-974.

MaYaoming, Kang Shichang, Zhu Liping, et al. 2008. Roof of the world:Tibetan observation and research platform[J]. Bull Amer Meteor Soc, 89(10):1487-1492.

Massimo B, Sam B S. 2004. The role of the Himalayas and the Tibetan Plateau within the Asian monsoon system[J]. Bull Amer Meteor Soc, 85(7):1001-1004.

Prive N C, Xie Y, Woollen J S, et al. 2013. Evaluation of the earth systems research laboratory's global observing system simulation experiment system[J]. Tellus A, 65:19011.

QieXiushu, Xueke Wu, Tie Yuan, et al. 2014. Comprehensive pattern of deep convective systems over the Tibetan Plateau-south Asian monsoon region based on TRMM Data[J]. J Climate, 27(17):6612-6626.

Szunyogh I, Toth Z, Zimin A, et al. 2002. On the propagation of the effect of targeted observations:The 2000 Winter Storm Reconnaissance Program[J]. Mon Wea Rev, 130:1144-1165.

Xu Xiangde, Qiuju Miao, Jizhi Wang, et al. 2003. The water transportmodel at the regional boundary during the meiyu period[J]. AdvAtmos Sci, 20(3):333-342.

Xu Xiangde, Zhang Renhe, Toshio K, et al. 2008. A new integrated observational system overthe Tibetan Plateau[J]. Bull Amer Meteor Soc, 89(10):1492-1496.

Zhang Guangzhi, Xu Xiangde, Wang Jizhi. 2003. A dynamic study of Ekman characteristics by using 1998 SCSMEX and TIPEX boundary layer data[J]. Adv Atmos Sci, 20(3):349-356.

何钰, 李国平. 2013. 青藏高原大地形对华南持续性暴雨影响的数值试验[J]. 大气科学, 37(4):933-944. HeYu, Li Guoping. 2013. Numerical experiments on influence of Tibetan Plateau on persistent heavy rain in South China[J]. Chinese J Atmos Sci, 37 (4):933-944.

李川, 陈静, 何光碧. 2006. 青藏高原东侧陡峭地形对一次强降水天气过程的影响[J]. 高原气象, 25(3):442-450. Li Chuan, Chen Jing, He Guangbi. 2006. Impact of the steep terrain of eastern Qinghai-Xizang Plateau on the genesis and development of extreme heavy rainfall event[J]. Plateau Meteor, 37(4):442-450.

李跃清. 2011. 第三次青藏高原大气科学试验的观测基础[J]. 高原山地气象研究, 31(3):77-82. Li Yueqing, 2011. The observational basis of the 3rdTibetan Plateau atmospheric scientific experiment[J]. Plateau and Mountain Meteor Res, 27(3):77-82.

梁玲, 李跃清, 胡豪然, 等. 2013. 青藏高原夏季感热异常与川渝地区降水关系的数值模拟[J]. 高原气象, 32(6):1538-1545. Liang Ling, Li Yueqing, Hu Haoran, et al. 2013. Numerical study of influence of sensible heat anomalies in summer over Qinghai-Xizang Plateau on rainfall in Sichuan-Chongqing Regions[J]. Plateau Meteor, 32(6):1538-1545. DOI:10.7522/j. issn. 1000-0534.2013.00028.

刘式适, 柏晶瑜, 徐祥德, 等. 2000. 青藏高原大地形的动力、热力作用与低频振荡[J]. 应用气象学报, 11(3):312-321. Liu Shikuo, Bai Jingyu, Xu Xiangde, et al. 2000. Dynamic and thermodynamic effects of the Tibetan Plateau and the low-frequency fluctuation[J]. J Appl Meteor Sci, 11(3):312-321.

田红瑛, 田文寿, 雒佳丽, 等. 2014. 青藏高原地区上对流层-下平流层区域水汽分布和变化特征[J]. 高原气象, 33(1):1-13. Tian Hongying, Tian Wenshou, Ge Jiali, et al. 2014. Characteristics of water vapor distribution and variation in upper troposphere and lower stratosphere over Qinghai-Xizang Plateau[J]. Plateau Meteor, 33(1):1-13. DOI:10.7522/j. issn. 1000-0534.2013.00074.

吴国雄, 刘屹岷, 刘新, 等. 2005. 青藏高原加热如何影响亚洲夏季的气候格局[J]. 大气科学, 29:47-56. Wu Guoxiong, Liu Yimin, Liu Xin, et al. 2005. How the Heating over the Tibetan Plateau Affects the Asian Climate in Summer[J]. Chinese J Atmos Sci, 29(1):47-56.

徐祥德, 陈联寿. 2006. 青藏高原大气科学试验研究进展[J]. 应用气象学报, 17(6):756-772. Xu Xiangde, Chen Lianshou. 2006. Advances of the study on Tibetan Plateau experiment of atmospheric Sciences[J]. J Appl Meteor Sci, 17(6):756-772.

郁淑华, 高文良, 彭骏. 2013. 近13年青藏高原切变线活动及其对中国降水影响的若干统计[J]. 高原气象, 32(6):1527-1537. Yu Shuhua, Gao Wenliang, Peng Jun. 2013. Statistical analysis of shearline activity in QXP and its influence on rainfall in China in recent 13 years[J]. Plateau Meteor., 32(6):1527-1537. DOI:10.7522/j. issn. 1000-0534.2012.00149.

周玉淑, 邓涤菲. 2012. 等σ面相当重力位势分析方法及其对高原低涡个例的检验应用[J]. 大气科学, 36(1):47-62. Zhou Yushu, Deng Difei. 2012:Analysis method of equivalent isobaric geopotential on σ coordinate and its application to a vortex in the Tibetan Plateau[J]. Chinese J Atmos Sci, 36(1):47-62.

卓嘎, 徐祥德, 陈联寿. 2002. 青藏高原边界层高度特征对大气环流动力学效应的数值试验[J]. 应用气象学报, 13(2):163-169. Zhuo Ga, Xu Xiangde, Chen Lianshou. 2002. Dynamical effect of boundary layer characteristics of Tibetan Plateau on general circulation[J]. J Appl Meteor Sci, 13(2):163-169.

[1] 刘菊菊, 游庆龙, 王楠. 青藏高原夏季云水含量及其水汽输送年际异常分析[J]. 高原气象, 2019, 38(3): 449-459.
[2] 陈月, 李跃清, 范广洲, 陈宇航. 青藏高原大气蕴含潜热时空分布特征研究[J]. 高原气象, 2019, 38(3): 460-473.
[3] 王奕丹, 胡泽勇, 孙根厚, 谢志鹏, 严晓强, 郑汇璇, 付春伟. 高原季风特征及其与东亚夏季风关系的研究[J]. 高原气象, 2019, 38(3): 518-527.
[4] 郑汇璇, 胡泽勇, 孙根厚, 谢志鹏, 严晓强, 王奕丹, 付春伟. 那曲高寒草地总体输送系数及地面热源特征[J]. 高原气象, 2019, 38(3): 497-506.
[5] 明绍慧, 秦正坤, 黄瑜. 卫星资料揭示的青藏高原对流层上层温度气候演变趋势特征[J]. 高原气象, 2019, 38(2): 264-277.
[6] 杜牧云, 王斌, 肖艳姣, 付志康, 周伶俐. X波段双线偏振雷达青藏高原观测资料质量分析[J]. 高原气象, 2019, 38(2): 278-287.
[7] 常姝婷, 刘玉芝, 华珊, 贾瑞. 全球变暖背景下青藏高原夏季大气中水汽含量的变化特征[J]. 高原气象, 2019, 38(2): 227-236.
[8] 于涵, 张杰, 刘诗梦. 青藏高原地表非绝热加热模态及其与中国北方环流异常的联系[J]. 高原气象, 2019, 38(2): 237-252.
[9] 严晓强, 胡泽勇, 孙根厚, 谢志鹏, 王奕丹, 郑汇璇. 那曲高寒草地长时间地面热源特征及其气候影响因子分析[J]. 高原气象, 2019, 38(2): 253-263.
[10] 余小嘉, 杨胜朋, 蒋熹. COSMIC掩星资料在青藏高原地区的偏差特征[J]. 高原气象, 2019, 38(2): 288-298.
[11] 朱平, 俞小鼎. 青藏高原东北部一次罕见强对流天气的中小尺度系统特征分析[J]. 高原气象, 2019, 38(1): 1-13.
[12] 屠妮妮, 郁淑华, 高文良. 风场对高原涡在河套地区打转影响的初步分析[J]. 高原气象, 2019, 38(1): 66-77.
[13] 胡梦玲, 游庆龙. 青藏高原南侧经圈环流变化特征及其对降水影响分析[J]. 高原气象, 2019, 38(1): 14-28.
[14] 王玉琦, 鲍艳, 南素兰. 青藏高原未来气候变化的热动力成因分析[J]. 高原气象, 2019, 38(1): 29-41.
[15] 刘田, 阳坤, 秦军, 田富强. 青藏高原中、东部气象站降水资料时间序列的构建与应用[J]. 高原气象, 2018, 37(6): 1449-1457.
img

QQ群聊

img

官方微信