WACCM3对夏季青藏高原臭氧谷双心结构的模拟性能评估

万凌峰;郭栋;刘仁强;施春华;苏昱丞

PDF(5747 KB)
高原气象 ›› 2017, Vol. 36 ›› Issue (1) : 57-66. DOI: 10.7522/j.issn.1000-0534.2016.00004
论文

WACCM3对夏季青藏高原臭氧谷双心结构的模拟性能评估

  • 万凌峰;郭栋;刘仁强;施春华;苏昱丞
作者信息 +

Evaluation of WACCM3 Performance on Simulation of the Double Core of Ozone Valley over the Qinghai-Xizang in Summer

  • WAN Lingfeng;GUO Dong;LIU Renqiang;SHI Chunhua;SU Yucheng
Author information +
History +

摘要

利用全大气气候通用模式WACCM3对青藏高原夏季臭氧谷(OV)的双心结构进行了模拟。通过模式输出资料和ERA-interim再分析资料、MLS卫星资料的对比分析,对模式模拟性能进行了评估。结果表明WACCM3能模拟出青藏高原夏季OV的双心结构,尤其对上对流层下平流层区(UTLS)的OV中心位置模拟较好,强度偏强。平流层上部的OV模拟较差,中心偏东,强度偏强。因为WACCM3对夏季高原邻近地区上空UTLS区的环流尤其是南亚高压模拟较好,而UTLS区的臭氧损耗的主要原因是动力输送作用,所以模拟效果好。上部OV模拟较差的原因主要是环流场模拟不佳导致了氯化物和氮氧化物的分布模拟较差。

Abstract

The double core of Ozone Valley (OV) over the Qinghai-Xizang Plateau in summer was simulated by use of the WACCM3 (Whole Atmosphere Community Climate Model 3).The model performance was evaluated by inter-comparison of the model output data, ERA-Interim (European center for medium-range weather forecasts Re-Analysis Interim) data and MLS (Microwave Limb Sounder) satellite data.The results are as follows:The double core of OV over the Qinghai-Xizang Plateau in summer is detected in the WACCM3 output.The OV core near the Upper Troposphere-Lower Stratosphere (UTLS) is well performed in location.Intensity of the OV core is a little bit stronger than the observation.However, simulation is not good enough in the upper stratosphere.The upper stratospheric OV core from model output is stronger and biased to the east side.Successful simulation of atmospheric circulation is the reason for the well performance of the UTLS OV core which is mainly controlled by dynamic transport.The poor simulation of the upper OV is caused by the bad copy the chlorine and nitrogen compounds which may be resulted from the circulation differences between model output and observation.

关键词

青藏高原 / 臭氧谷 / 双心结构 / WACCM3

Key words

The Qinghai-Xizang P / Ozone valley / Double Core / WACCM3

引用本文

导出引用
万凌峰;郭栋;刘仁强;施春华;苏昱丞. WACCM3对夏季青藏高原臭氧谷双心结构的模拟性能评估. 高原气象. 2017, 36(1): 57-66 https://doi.org/10.7522/j.issn.1000-0534.2016.00004
万凌峰;郭栋;刘仁强;施春华;苏昱丞. Evaluation of WACCM3 Performance on Simulation of the Double Core of Ozone Valley over the Qinghai-Xizang in Summer. Plateau Meteorology. 2017, 36(1): 57-66 https://doi.org/10.7522/j.issn.1000-0534.2016.00004

参考文献

[1]Crutzen P J, Oppenheimer M.2008.Learning about ozone depletion[J].Climatic Change, 89(1-2):143-154.DOI:10.1007/s10584-008-9400-6.
[2]Dee D P, Uppala S M, Simmons A J, et al.2011.The ERA-Interim reanalysis:configuration and performance of the data assimilation system[J].Quart J Roy Meteor Soc, 137(656):553-597.DOI:10.1002/qj.828.
[3]Dee D P, Uppala S M.2009.Variational bias correction of satellite radiance data in the ERA-Interim reanalysis[J].Quart J Roy Meteor Soc, 135(644):1830-1841.DOI:10.1002/qj.493.
[4]Farman J C, Gardiner B G, Shanklin J D.1985.Large losses of total ozone in Antartica reveal seasonal CLOx/NOx interaction[J].Nature, 315(6016):207-210.DOI:10.1038/315207a0.
[5]Garcia RR, Marsh D R, Kinnison D E, et al.2007.Simulation of secular trends in the middle atmosphere, 1950-2003[J].J Geophys Res, 112(D9):1-23.DOI:10.1029/2006JD007485.
[6]Guo D, Su Y C, Shi C H, et al.2015.Double core of ozone valley over the Tibetan Plateau and its possible mechanisms[J].J Atmospheric and Solar-Terrestrial Physics, 130-131:127-131.DOI:10.1016/j.jastp.2015.05.018.
[7]Guo D, Su Y C, Zhou X J, et al.2016.Evaluation of Trend Uncertainty of Summer Ozone Valley over Tibetan Plateau in Three Reanalysis Datasets[J].J Meteor Res.DOI:10.1007/s13351-017-6058-x.
[8]Guo D, Wang P X, Zhou X J, et al.2012.Dynamic effects of the South Asian high on the ozone valley over the Tibetan Plateau[J].Acta Meteor Sinica, 26(2), 216-228.DOI:10.1007/s13351-012-0207-2.
[9]Hingane L S.1990.Ozone valley in the subtropics[J].J Atoms Sci, 47(14):1814-1816.DOI:<a href="10.1175/1520-0469(1990)047&#60;1814:OVITS>2.0.CO; 2" target=_blank>10.1175/1520-0469(1990)047&#60;1814:OVITS>2.0.CO; 2</a>.
[10]Liu Y, Li W L, Zhou X J, et al.2003.Mechanism of formation of the ozone valley over the Tibetan Plateau in summer-transport and chemical process ofozone[J].Adv Atmos Sci, 20(1):103-109.DOI:10.1007/BF03342054.
[11]Liu Y, Wang Y, Liu X, et al.2009.Tibetan middle tropospheric ozone minimum in June discovered from GOMEobservations[J].Geophys Res Lett, 36(5):1-6.DOI:10.1029/2008GL037056.
[12]Molina M J, Rowland F S.1974.Stratospheric sink forchlorofluoromethanes:chlorine atomc-atalysed destruction of ozone[J].Nature, 249(5460):810-812.DOI:10.1038/249810a0.
[13]Newman P A, Gleason J F, McPeters R D, et al.1997.Anomalously low ozone over the Arctic[J].Geophys Res Lett, 24(22):2689-2692.DOI:10.1029/97GL52831.
[14]Reiter E R, Gao D Y.1982.Heating of the Tibet Plateau and movements of the South Asian high during spring[J].Mon Wea Rev, 110(11):1694-1711.DOI:10.1175/1520-0493.
[15]Rowland F S.2006.Stratospheric ozonedepletion[J].Philosophical Transactions of the Royal Society B:Biological Science, 361(1469):769-790.DOI:10.1098/rstb.2005.1783.
[16]Solomon Susan.1999.Stratospheric ozone depletion:A review of concepts andhistory[J].Rev Geophys, 37(3):275-316.DOI:10.1029/1999RG900008.
[17]Tian W S, Chipperfield M, Huang Q.2008.Effects of the Tibetan Plateau on total column ozone distribution[J].Tellus B, 60(4):622-635.DOI:10.1111/j.1600-0889.2008.00338.x.
[18]Tobo Y, Iwasaka Y, Zhang D Z, et al.2008.Summertime "ozone valley" over the Tibetan Plateau derived from ozonesondes and EP/TOMS data[J].Geophys Res Lett, 35(16):1-5.DOI:/10.1029/2008GL034341.
[19]Waters J W, Froidevaux L, Harwood R S, et al.2006.The Earth Observing System Microwave Limb Sounder (EOS MLS) on the Aura Satellite[J].IEEE Transactions on Geoscience and Remote Sensing, 44(5):1075-1092.DOI:10.1109/TGRS.2006.873771.
[20]Waters J W, Read W G, Froidevaux L, et al.1999.The UARS and EOS Microwave Limb Sounder (MLS) Experiments[J].J Atmos Sci, 56(2):194-218.DOI:<a href="10.1175/1520-0469(1999)056&#60;0194:TUAEML>2.0.CO; 2" target=_blank>10.1175/1520-0469(1999)056&#60;0194:TUAEML>2.0.CO; 2</a>.
[21]Ye Z J, Xu Y F.2003.Climate characteristics of ozone over TibetanPlateau[J].J Geophys Res, 108(D20):1-15.DOI:10.1029/2002JD003139.
[22]Zhang J K, Tian W S, Xie F, et al.2014.Climate warming and decreasing total column ozone over the Tibetan Plateau during winter and spring[J].Tellus:Chemical and Physical Meteorology, 66(8):136-140.DOI:10.3402/tellusb.v66.23415.
[23]Zhou S W, Zhang R H.2005.Decadal variations of temperature andgeopotential height over the Tibetan Plateau and their relations with Tibet ozone depletion[J].Geophys Res Lett, 32(18):1-4.DOI:10.1029/2005GL023496.
[24]Zou H, Gao Y Q.1997.Vertical ozone profile over Tibet using sage Ⅰ and Ⅱ data[J].Adv Atmos Sci, 14(4):505-512.DOI:10.1007/s00376-997-0068-z.
[25]Bian Jianchun, Yan Renchang, Chen Hongbin.2011.Tropospheric pollutant transport to the stratosphere by Asian summer monsoon[J].Chinese J Atmos Sci, 35(5):897-902.DOI:10.3878/j.issn.1006-9895.2011.05.09.<br/>卞建春, 严仁嫦, 陈洪滨.2011.亚洲夏季风是低层污染物进入平流层的重要途径[J].大气科学, 35(5):897-920.DOI:10.3878/j.issn.1006-9895.2011.05.09.
[26]Chen bin, Shi xiaohui, Xu xiangde, et al.2011.Characteristics of troposphere-stratosphere transports over Asian monsoon region in summer based on Aura-MLS Data[J].Plateau Meteor, 30(1):65-73.<br/>陈斌, 施晓晖, 徐祥德, 等.2011.利用卫星大气成分资料分析夏季亚洲季风区平流层-对流层输送特征[J].高原气象, 30(1):65-73.
[27]Chen Chuang, Tian Wenshou, Tian Hongying, et al.2012.Vertical distribution of ozone and stratosphere-troposphere exchanges on the northeastern side of Tibetan Plateau[J].Plateau Meteor, 31(2):295-303.<br/>陈闯, 田文寿, 田红瑛, 等.2012.青藏高原东北侧臭氧垂直分布与平流层-对流层物质交换[J].高原气象, 31(2):295-303.
[28]Liu yi, Liu Chuanxi, Lu Chunhui.2009.Impacts of the stratospheric sudden warming on the stratospheric circulation and chemical tracers[J].Adv Earth Sci, 24(3):297-307.DOI:10.11867/j.issn.1001-8166.2009.03.0297.<br/>刘毅, 刘传熙, 陆春晖.2009.平流层爆发性增温中平流层环流及化学成分变化过程研究[J].地球科学进展, 24(3):297-307.
[29]Liu yu, Li weiliang, Zhou Xiuji.2010.A possible effect of heterogeneous reactions on the formation of the ozone valley over the Tibetan Plateau[J].Acta Meteor sinica, 68(6):836-846.DOI:10.11676/qxxb2010.079.<br/>刘煜, 李维亮, 周秀骥.2010.非均相化学过程在青藏高原臭氧低谷形成中的作用[J].气象学报, 68(6):836-846.
[30]Shi Chunhua, Chang Shujie, Shen Xinyong, et al.2015.The effects of cloud top above tropopause events on the structure of the upper troposphere and lower stratosphere in summer over East Asia[J].Trans.Atmos.Sci, 38(6):804-810.<br/>施春华, 常舒捷, 沈新勇, 等.2015.夏季云顶高于对流层顶事件对东亚上对流层-下平流层大气结构的影响[J].大气科学学报, 38(6):804-810.
[31]Shi Chunhua, Hui Li, Zheng Bin, et al.2014.Stratosphere-troposphere exchange corresponding to a deep convection in the warm sector and abnormal subtropical front induced by a cutoff low over East Asia[J].Chinese J Geophys, 57(1):21-30.<br/>施春华, 李慧, 郑彬, 等.2014.一次切断低压诱发的暖区深对流与异常副热带锋及其平流层-对流层交换[J].地球物理学报, 57(1):21-30.
[32]Su Yucheng, Guo Dong, Guo Shengli, et al.2016.Ozone trends over the Tibetan Plateau in the next 100 years and their possible mechanism[J].Trans Atmos Sci, 39(3):309-317.<br/>苏昱丞, 郭栋, 郭胜利, 等.2016.未来百年夏季青藏高原臭氧变化趋势及可能机制[J].大气科学学报, 39(3):309-317.
[33]Wang Weiguo, Liang Junping, Wang Haoyue, et al.2010.Comparative study on mass and ozone fluxes cross tropopause over Qinghai-Xizang Plateau and its surrounding areas[J].Plateau Meteor, 29(3):554-562.<br/>王卫国, 梁俊平, 王颢樾, 等.2010.青藏高原及附近区域穿越对流层顶的质量和臭氧通量研究[J].高原气象, 29(3):554-562.
[34]Zhou Shunwu, Yang Shuangyan, Zhang Renhe, et al.2012.Possible causes of total ozone depletion over the Qinghai-Xizang Plateau and its relation to tropopause height in recent 30 years[J].Plateau Meteor, 31(6):1471-1478.<br/>周顺武, 杨双艳, 张人禾, 等.2012.近30年青藏高原臭氧总量亏损的可能原因及其与对流层顶高度的联系[J].高原气象, 31(6):1471-1478.
[35]Zhou Xiuji, Ruo Chao, Li Weiliang, et al.1995.Total ozone changes in China and low center of the Tibetan plateau[J].Chinese Sci Bull.40(15):1396-1398.<br/>周秀骥, 罗超, 李维亮, 等.1995.中国地区臭氧总量变化与青藏高原低值中心[J].科学通报, 40(15):1396-1398.

基金

国家自然科学基金项目(41305039,41375047,41575040,41675039,41641042,91537213,41375092,41475140);国家留学基金;江苏高校优势学科建设工程资助项目(PAPD)
PDF(5747 KB)

1311

Accesses

0

Citation

Detail

段落导航
相关文章

/