Please wait a minute...
高级检索
高原气象  2017, Vol. 36 Issue (3): 619-631    DOI: 10.7522/j.issn.1000-0534.2016.00057
论文     
WRF模拟青藏高原东南部极端旱涝年降水的参数敏感性研究
吴遥1,2, 李跃清2, 蒋兴文2, 董元昌2
1. 成都信息工程大学大气科学学院/高原天气与环境四川省重点实验室, 成都 610225;
2. 中国气象局成都高原气象研究所/高原与盆地暴雨旱涝灾害四川省重点实验室, 成都 610072
Parameters Sensitivity Analysis on Simulation of Rainfall in Drought-Flood Year on Qinghai-Tibetan Plateau by WRF Model
WU Yao1,2, LI Yueqing2, JIANG Xingwen2, DONG Yuanchang2
1. Department of Atmosphere Science, Chengdu University of Information Technology;Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, Chengdu 610225, China;
2. Institute of Plateau Meteorology, China Meteorological Administration;Heavy Rain and Drought-Flood Disaster in Plateau and Basin Key Laboratory of Sichuan Province, Chengdu 610072, China
 全文: PDF(1133 KB)   HTML
摘要: 为了进一步评估和提高区域模式对青藏高原地区极端气候的模拟能力,利用WRF模式,采用不同模式参数(包括边界位置、积云对流、边界层参数化方案和水平分辨率)模拟了青藏高原东南部极端旱(2006年)、涝(1998年)年夏季降水。对比不同参数模拟的降水结果表明:整体而言,无论是旱年还是涝年,除南边界以外的模式边界位置对高原主体和东南部降水模拟的影响较小;边界层方案对降水空间形态的模拟影响较小,而对降水量级的影响较大;积云对流方案对降水空间形态和量级的影响均较大;采用15 km水平分辨率时可显著改善模式对高原主体和东南部降水的模拟水平。WRF采用适当的参数组合能较好地模拟高原主体和东南部降水的空间分布,但降水量偏大。整体而言,能较好模拟旱年降水的边界层和积云对流参数化方案组合也能较好模拟涝年降水。模式模拟的高原南侧降水偏多可能使高原南侧西风偏强,并进一步造成云南西南部降水偏多;湖南南部降水偏多可能在云南东北部至贵州地区激发出较强的气旋式环流偏差,该偏差环流在四川盆地形成异常强的偏北风,导致低纬度地区进入四川盆地的水汽偏小,从而在四川盆地形成明显的相对干偏差。因此,模式在四川盆地降水模拟能力的提高不仅要做好参数的本地化工作,还需要关注盆地以外地区的影响。
关键词: 青藏高原WRF模式参数敏感性极端降水    
Abstract: For further evaluating and improving the skill of predicting extreme climate in Qinghai-Tibetan Plateau (QTP) using regional climate model (GCM). In this paper, the Weather Research Forecast (WRF) model was used to simulate summer rainfall on the southeastern QTP for the drought (1998) and flood (2006) years with various parameters, including boundary position, cumulus convection (CU) and planetary boundary layer (PBL) parameterization schemes, and horizontal resolution. Differences in rainfall simulated by various model parameters show that the simulated rainfall in the central and southeastern QTP is not sensitive to model boundary positions except south boundary position, but sensitive to PBL and CU parameterization schemes. Different CU parameterization schemes caused apparent differences in both spatial pattern and magnitude of simulated rainfall, while PBL parameterization schemes caused difference only in magnitude. The WRF exhibited higher skill in simulating rainfall in QTP and its adjacent areas with 15 km horizontal resolution. Overall, the simulated rainfall is strongly depended on the model horizontal resolution among the four model parameters. WRF shows better skill in simulating spatial pattern of rainfall compared to magnitude. It always produces a wet bias in central and southern QTP. Overall, the set of PBL and CU parameterization schemes shows the best skill in simulating rainfall for flood year, and also do the best for drought year. WRF has larger bias in simulating rainfall in slop of QTP compared to main body. It has an apparent dry bias in the Sichuan Basin. The dry bias is linked to the wet bias in southern Hunan, which excites an anomalous cyclone over northeastern Yunnan and Guizhou. Northeaster lies associated with the anomalous cyclone causes a reduction in water vapor entering the Sichuan Basin, resulted in an obvious relative dry bias there. The stronger than observed wester-lies to the south of QTP, associated with wet bias in south slop of QTP, causes higher than observed rainfall over the southwestern Yunnan. Thus, a better simulation of rainfall in the Sichuan Basin is depended on not only optimization of parameters of CU or PBL locally, but also improvement in climate outside.
Key words: Qinghai-Tibetan Plateau    WRF    Model Parameters    Rainfall extremes
收稿日期: 2016-03-03 出版日期: 2017-06-20
:  P435  
基金资助: 公益性行业(气象)科研专项(GYHY201406001);国家自然科学基金项目(91337107,41275051);中国气象局成都高原气象研究所基本科研业务项目(BROP201514);四川省应用基础研究计划重点项目(2016JY0046)
通讯作者: 李跃清.E-mail:yueqingli@163.com     E-mail: yueqingli@163.com
作者简介: 吴遥(1991),男,四川简阳人,硕士研究生,主要从事气候数值模拟研究.E-mail:cuit_sky@163.com
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
吴遥
李跃清
蒋兴文
董元昌

引用本文:

吴遥, 李跃清, 蒋兴文, 董元昌. WRF模拟青藏高原东南部极端旱涝年降水的参数敏感性研究[J]. 高原气象, 2017, 36(3): 619-631.

WU Yao, LI Yueqing, JIANG Xingwen, DONG Yuanchang. Parameters Sensitivity Analysis on Simulation of Rainfall in Drought-Flood Year on Qinghai-Tibetan Plateau by WRF Model. PLATEAU METEOROLOGY, 2017, 36(3): 619-631.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2016.00057        http://www.gyqx.ac.cn/CN/Y2017/V36/I3/619

Betts A K, Hong S Y, Pan H L. 1996. Comparison of NCEP-NCAR Reanalysis with 1987 FIFE data[J]. Mon Wea Rev, 124:1480-1498.
Bougeault Ph and Lacarrere P. 1989. Parameterization of orography induced turbulence in a meso-scale model[J]. Mon Wea Rev, 117:1872-1890.
Entekhabi D, Rodriguez-Iturbe I, Castelli F. 1996. Mutual interaction of soil moisture state and atmospheric processes[J]. J Hydrol, 184(1):3-17.
GAO Y H, Leung L R, Salathe E P, et al. 2012. Moisture flux convergence in regional and global climate models:Implications for droughts in the southwestern United States under climate change[J]. Geophys Res Lett, 39(L09):L09711. DOI:10. 1029/2012GL051560.
Gao Y H, Vano J A, Zhu C M, et al. 2011. Evaluating climate change over the Colorado River basin using regional climate models[J]. J Geophys Res, 116(D13):D13104. DOI:10. 1029/2010JD015278.
Gao Y H, Xu J W, Chen D L, et al. 2015. Evaluation of WRF mesoscale climate simulations over the Tibetan Plateau during 1979-2011[J]. J Climate, 28:2823-2841.
Grell G A, Devenyi D. 2002. Ageneralized approach to parameterizing convection combining ensemble and data assimilation techniques[J], Geophys Res Letts, 29(14), 1693, doi:10. 1029/2002GL015311.
Hong S Y, Lim J J. 2006. The WRF single-moment 6-class microphysics scheme (WSM6)[J]. Korean Meteorol Soc, 42:129-151.
Hong S Y, Noh Y, Dudhia J. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Mon Wea Rev, 134:2318-2341.
Janjic Z I. 1994. The step-mountain eta coordinate model:further developments of the convection, viscous sublayer and turbulence closure schemes[J]. Mon Weather Rev, 122:927-945.
Janjic Z I. 2000. Comments ondevelopment and evaluation of a convection scheme for use in climate models[J]. J Atmos Sci, 57:3686.
Kala J, Andrys J, Tom J, et al. 2015. Sensitivity of WRF to driving data and physics options on a seasonal time-scale for the southwest of Western Australia[J]. Climate Dyn, 45(3):633-659.
Kain J S. 2004. The Kain-Fritsch convective parameterization:an update[J]. J Appl Meteorol, 43:170-181.
Klein C, Heinzeller D, Bliefernicht J, et al. 2015. Variability of West African monsoon patterns generated by a WRF multi-physics ensemble[J]. Climate Dyn, 45(9):2733-2755.
Ma L M, Tan Z M. 2009. Improving the behavior of the cumulus parameterization for tropical cyclone prediction:convection trigger[J]. Atmos Res, 92:190-211.
Meehl G A, Covey C, Taylor K E, et al. 2007. The WCRP CMIP3 multi-model dataset:A new era in climate change research[J]. Bull Amer Meteor Soc, 88(9), 1383-1394.
Mellor G L, Yamada T. 1982. Development of a turbulence closure model for geophysical fluidproblems[J]. Rev Geophys Space Phys, 20(4):851-875.
Pleim J E. 2007. A combined local and nonlocal closure model for the atmospheric boundary layer. PartⅠ:Model description and testing[J]. J Appl Meteor Climatol, 46:1383-1395.
Taylor K E. 2001. Summarizing multiple aspects of model performance in a single diagram[J]. J Geophys, 106(7):7183-7192.
Xue Y K, Janjic Z, Dudhia J, et al. 2014. A review on regional dynamical downscaling in intraseasonal to seasonal simulation/prediction and major factors that affect downscaling ability[J]. Atmos Res, 147:68-85.
Zhuo H F, Liu Y M, Jin J M. 2016. Improvement of land surface temperature simulation over the Tibetan Plateau and the associated impact on circulation in East Asia[J]. Atmos Sci Lett, 17:162-168.
白爱娟, 刘长海, 刘晓东. 2008. TRMM多卫星降水分析资料揭示的高原及其周边地区夏季降水日变化[J]. 地球物理学报, 51(3):704-714. Bai Aijuan, Liu Changhai, Liu Xiaodong. 2008. Diurnal variation of summer rainfall over the Tibetan Plateau and its neighboring regions revealed by TRMM multi-satellite precipitation analysis[J]. Chinese J Geophys, 51(3):704-714.
高笃鸣, 李跃清, 蒋兴文, 等. 2016. WRF模式多种边界层参数化方案对四川盆地不同量级降水影响的数值试验[J]. 大气科学, 40(2):371-389. Gao Duming, Li Yueqing, Jiang Xingwen, et al. 2016. Influence of planetary boundary layer parameterization schemes on the prediction of rainfall with different magnitudes in the sichuan basin using the WRF model[J]. Chinese J Atmos Sci, 40(2):371-389.
何光碧, 彭俊, 屠妮妮. 2015. 基于高分辨率地形数据的模式地形构造与数值试验[J]. 高原气象, 34(4):910-922. He Guangbi, Peng Jun, Tu nini. 2015. Terrain construction and experiment for numerical model based on high resolution terrain data[J]. Plateau Meteor, 34(4):910-922. DOI:10. 7522/j. issn. 1000-0534. 2014. 00022.
何由, 阳坤, 姚檀栋, 等. 2012. 基于WRF模式对青藏高原一次强降水的模拟[J]. 高原气象, 31(5):1183-1191. He You, Yang Kun, Yao Tandong, et al. 2012. Numerical simulation of a heavy precipitation in Qinghai-Xizang Plateau based on WRF model[J]. Plateau Meteor, 31(5):1183-1191.
黄荣辉, 徐予红, 王鹏飞. 1998. 1998 年夏长江流域特大洪涝特征及其成因探讨[J]. 气候与环境研究, 3(4):300-313. Huang Ronghui, Xu Yuhong, Wang Pengfei. 1998. The features of the catastrophic flood over the changjiang river basin during the summer of 1998 and cause exploration[J]. Climatic and Environmental Research, 3(4):300-313.
蒋兴文, 李跃清, 何光碧. 2008. 青藏高原东部大气探空廓线的气候特征分析[J]. 高原山地气象研究, 28(4):1-9. Jiang Xingwen, Li Yueqing, He Guangbi. 2008. The climate characteristics analysis of radiosonde data over east part of Tibetan Plateau[J]. Plateau Mountain Meteor Res, 28(4):1-9.
刘华强, 钱永甫, 郑益群. 2002. P-σ坐标系区域气候模式与GCM的嵌套试验[J]. 高原气象, 21(2):113-118. Liu Huangqinag, Qian Yongfu, Zheng Yiqun. 2002. The tests of P-σ hybrid coordinate regional climate model nested into GCM[J]. Plateau Meteor, 21(2):113-118.
刘黎平, 钱永甫, 吴爱明. 2000. 区域模式和GCM对青藏高原和西北地区气候模拟结果的对比分析[J]. 高原气象, 19(3):313-322. Liu Liping, Qian Yongfu, Wu Aiming. 2000. Comparison of simulation result of regional climate in summer over Qinghai-Xizang Plateau and northwest china[J]. Plateau Meteor, 19(3):313-322.
罗小青, 杨梅学, 王学佳, 等. 2014. 两种积云参数化方案对青藏高原夏季降水影响的模拟[J]. 高原气象, 33(2):313-322. Luo Xiaoqing, Yang Xuemei, Wang Xuejia, et al. 2014. Simulation influences of summer precipitation by two cumulus parameterization schemes over Qinghai-Xizang Plateau[J]. Plateau Meteor, 33(2):313-322. DOI:10. 7522/j. issn. 1000-0534. 2013. 00177.
刘晓冉, 李国平. 2014. WRF模式边界层参数化方案对西南低涡模拟的影响[J]. 气象科学, 34(4):162-170. Liu Xiaoran, Li Guoping. 2014. Effects of planetary boundary layer parameterization schemes in WRF model on southwest vortex simulation[J]. J Meteor Sci, 34(2):162-170.
刘银峰, 徐海明, 雷正翠. 2009. 2006年川渝地区夏季干旱的成因分析[J]. 大气科学学报, 32(5):686-694. Liu Yinfeng, Xu Haiming, Lei Zhengcui. 2009. Possible causes for drought in sichuan-chongqing region in summer 2006[J]. Transactions of Atmospheric Sciences, 33(5):686-694.
潘留杰, 张宏芳, 王建鹏, 等. 2014. 日本高分辨率模式对中国降水预报能力的客观检验[J]. 高原气象, 33(2):483-494. Pan Liujie, Zhang Hongfang, Wang Jianpeng, et al. 2014. An objective verification of forecasting ability of Japan high-resolution model precipitation in China[J]. Plateau Meteorology, 33(2):483-494. DOI:10. 7522/j. issn. 1000-0534. 2012. 00188.
王澄海, 余莲. 2011. 区域气候模式对小同的积云参数化力案在青藏高原地区气候模拟中的敏感性研究在[J]. 大气科学, 35(6):1132-1144. Wang Chenghai, Yu Lian. 2011. Sensitivity of regional climate model to different cumulus parameterization schemes in simulation of the Tibetan Plateau climate[J]. Chinese J Atmos Sci, 35(6):1132-1144.
王子谦, 段安民, 吴国雄. 2014. 边界层参数化方案及海气耦合对WRF模拟东亚夏季风的影响[J]. 地球科学, 44(3):548-562. Wang Zhiqian, Duan Anming, Wu Guoxiong. 2014. Impacts of boundary layer parameterization schemes and air-sea coupling on WRF simulation of the East Asian summer monsoon[J]. Science China:Earth Sciences, 44(3):548-562.
吴国雄, 刘屹岷. 2000. 热力适应、过流、频散和副高I. 热力适应和过流[J]. 大气科学, 24(4):433-446. Wu Guoxiong, Liu Yimin. 2000. Thermal adaptation, overshooting, dispersion, and subtropical anticyclone part I:Thermal adaptation and overshooting[J]. Chinese J Atmos Sci, 24(4):433-446.
吴遥, 李跃清, 蒋兴文, 等. 2015. 两种边界层参数化方案对WRF模拟青藏高原2013年夏季降水的影响[J]. 高原山地气象研究, 35(2):7-16. Wu Yao, Li Yueqing, Jiang Xingwen, et al. 2015. Influence of two planetary boundary layer parameterization schemes on summer rain in 2013 on Tibetan Plateau by WRF model[J]. Plateau Mountain Meteor Res, 33(2):7-16.
余莲. 2011. 青藏高原地区气候变化的特征及数值模拟研究[D]. 兰州:兰州大学. Yu Lian. 2011. Simulating study on the characteristics of climate change and over Tibet Plateau[D]. Lanzhou:Lanzhou University.
杨文月, 马金辉, 杨文凯. 2014. 基于TRMM卫星的近10a甘肃临夏降水变化特征[J]. 干旱气象, 32(5):934-939. Yang Wenyue, Ma Jinhui, Yang Wenkai. 2014. Variation characteristics of precipitation based on TRMM data during 20012010 in linxia of gansu province[J]. J Arid Meteor, 32(5):934-939.
杨志刚, 建军, 洪建昌. 2014. 1961-2010年西藏极端降水事件时空分布特征[J]. 高原气象, 33(1):37-42. Yang Zhigang, Jian Jun, Hong Jianchang. 2014. Temporal and spatial distribution of extreme precipitation events in Tibet during 19612010[J]. Plateau Meteorology, 33(1):37-42. DOI:10. 7522/j. issn. 1000-0534. 2013. 00147.
朱春玲, 马耀明, 陈学龙. 2011. 青藏高原西部及东南周边地区季风前大气边界层结构分析[J]. 冰川冻土, 33(2):325-333. Zhu Chunling, Ma Yaoming, Cheng Xuelong. 2011. Atmospheric boundary layer structure in the west and the southeastern periphery of the Tibetan Plateau during the pre-Monsoon period[J]. Journal of Glaciology and Geocryology, 33(2):325-333.
[1] 刘菊菊, 游庆龙, 王楠. 青藏高原夏季云水含量及其水汽输送年际异常分析[J]. 高原气象, 2019, 38(3): 449-459.
[2] 陈月, 李跃清, 范广洲, 陈宇航. 青藏高原大气蕴含潜热时空分布特征研究[J]. 高原气象, 2019, 38(3): 460-473.
[3] 王奕丹, 胡泽勇, 孙根厚, 谢志鹏, 严晓强, 郑汇璇, 付春伟. 高原季风特征及其与东亚夏季风关系的研究[J]. 高原气象, 2019, 38(3): 518-527.
[4] 郑汇璇, 胡泽勇, 孙根厚, 谢志鹏, 严晓强, 王奕丹, 付春伟. 那曲高寒草地总体输送系数及地面热源特征[J]. 高原气象, 2019, 38(3): 497-506.
[5] 蒋宗孝, 沈永生, 蒋永成, 曾晓枚, 廖燕珍, 王铁. 多普勒雷达资料同化在福建地区暴雨过程中的模拟试验[J]. 高原气象, 2019, 38(3): 563-572.
[6] 明绍慧, 秦正坤, 黄瑜. 卫星资料揭示的青藏高原对流层上层温度气候演变趋势特征[J]. 高原气象, 2019, 38(2): 264-277.
[7] 杜牧云, 王斌, 肖艳姣, 付志康, 周伶俐. X波段双线偏振雷达青藏高原观测资料质量分析[J]. 高原气象, 2019, 38(2): 278-287.
[8] 潘欣, 尹义星, 王小军. 1960-2014年淮河流域极端降水发生时间的时空特征[J]. 高原气象, 2019, 38(2): 377-385.
[9] 常姝婷, 刘玉芝, 华珊, 贾瑞. 全球变暖背景下青藏高原夏季大气中水汽含量的变化特征[J]. 高原气象, 2019, 38(2): 227-236.
[10] 于涵, 张杰, 刘诗梦. 青藏高原地表非绝热加热模态及其与中国北方环流异常的联系[J]. 高原气象, 2019, 38(2): 237-252.
[11] 严晓强, 胡泽勇, 孙根厚, 谢志鹏, 王奕丹, 郑汇璇. 那曲高寒草地长时间地面热源特征及其气候影响因子分析[J]. 高原气象, 2019, 38(2): 253-263.
[12] 余小嘉, 杨胜朋, 蒋熹. COSMIC掩星资料在青藏高原地区的偏差特征[J]. 高原气象, 2019, 38(2): 288-298.
[13] 朱平, 俞小鼎. 青藏高原东北部一次罕见强对流天气的中小尺度系统特征分析[J]. 高原气象, 2019, 38(1): 1-13.
[14] 屠妮妮, 郁淑华, 高文良. 风场对高原涡在河套地区打转影响的初步分析[J]. 高原气象, 2019, 38(1): 66-77.
[15] 胡梦玲, 游庆龙. 青藏高原南侧经圈环流变化特征及其对降水影响分析[J]. 高原气象, 2019, 38(1): 14-28.
img

QQ群聊

img

官方微信